
1/34

Delphi Compiler Options

THE DA DELPHI CODE:
Build an Exe more "other

language friendly" and less IDE

or platform dependant.

2/34

Content of Compiler Directives

� Switch directives {$B+,R-,S-}
� Parameter directives. {$I TYPES.INC} {$M

32768,4096} {$L jutils.obj}
� Conditional directives. {$IFDEF Debug}
Advantages:
control compiler versions or smart linker
code documentation
faster compilation, less parsing
command line compiler available
build dll, obj, service or package with compiler directives

3/34

so what’s about ?

{ We need a symbol for the Pascal entry point (main unit's
body). An external symbol `main' fixed up by the linker
would be fine. Alas, external declarations can't do that;
they must be resolved either in the same file with a $L
directive, or in a shared object. Hack: use a bogus,
distinctive symbol to mark the fixup, find and patch it
in the linker. }

// extract from unit sysinit, does it sound useful ?
� You have to raise, ignore or fix a problem !
� Delphi doesn't have a pre-processor like in C++:

therefore it makes use of compiler directives.

4/34

Versioning Problem or smart linker?

� When we update a DLL (change function's implementation), we
simply compile it, export some new routines and ship the new
version. All the applications using this DLL will still work (unless, of
course, you've removed existing exported routines).

� On the other hand, when updating a package, you cannot ship a
new version of your package without also updating the executable.
This is why we cannot use a unit compiled in D9 in a D10 project
unless we have the unit's source; the compiler checks version
information of DCU's and decides whether an unit has to be
recompiled so any package you provide for your application must
be compiled using the same Delphi version used to compile the
application.

� Note: You cannot provide a package written in D10 to be used by
an application written in D9.

5/34

Tasks of a Compiler

� Tokenising (Lexer) � Syntax analysis (Parser) �
Semantic analysis � Translation � Code Generator

� Memory Management
� Exception Handling and Preprocessing
� Symbol Table Management
� Call Convention
� Data alignment and Types
� Name Mangling (more later on)
� RTL (Run Time Library)
� - to Common
� - to Sys
� - to Win

6/34

Compiler View

7/34

Compiler Multi Environment

Advantage: want the biggest amount of
people being able to use our source

DLLDLL
importsimports

ClientClient

OtherOther PlatformPlatform

dire
ctiv

es

dire
ctiv

es
OtherOther LanguageLanguage

compilercompiler

C
al

lin
gs

C
al

lin
gs

OtherOther FrameworkFramework

static
static

dynamic

dynamic

EXEEXE
importimport

ClientClient

OtherOther PlatformPlatform

dire
ctiv

es

dire
ctiv

es
OtherOther LanguageLanguage

compilercompiler

C
al

lin
gs

C
al

lin
gs

OtherOther FrameworkFramework

static
static

dynamic

dynamic

8/34

Memory Management

Delphi uses a mixed memory model, but it is very close to the "C" large
model. The defaults are:

� Methods are far
� Procedures in an interface section are far
� Procedures only used in an implementation section are near
� Heap data and pointers in general (including class instances) are far
� Global variables are near (DS based)
� Procedure parameters and local variables are near (SS based)
� Procedures declared FAR or EXPORT are far
� Virtual memory tables are far for the new class model and near for

the old
Code Ex.: FastMM Project

9/34

Get your Options first

The first decision we should make is:
� with Ctr-O-O or in a *.inc file ? � ex.
� Build Debug Version like (R+,I+,Q+)
� (when Q also R!)
� *.bdsproj : Borland Developer Studio Project File . Successor

of the .dof file holding compiler options etc. Also used for opening a

project. .dproj Project File .
D2007 Replaces bdsproj file.
Set the target builds (Debug and Release)

10/34

Convention over Configuration

� Directives as *.inc file available ({$I
IdCompilerDirectivs.inc}, {$I IdVers.inc}).
Example of SysInit (no inc file):

� {$H+,I-,R-,S-,O+,W-}
� {$WARN SYMBOL_PLATFORM OFF}
� {$WARN UNSAFE_TYPE OFF}

11/34

Code Generation optimization

Leave the {$O+} (or {$Optimization On}) compiler directive
on. With this directive, Delphi compiler produces more
efficient code. Sometimes, debugging is more difficult
with optimization enabled: you can’ set a breakpoint on
a statement if the optimizer determines that the
statement serves no purpose. All optimizations
performed by the compiler are guaranteed not to alter
the meaning of a program ;).

All binary modules which use the Delphi RTL (CLX)
must be built with the same version of the RTL
runtime package.

12/34

Code Generation example

� Directive $A controls the alignment of fields in record
types and class structures.

� In status {$A1} or {$A-} fields don’t get an alignment. All
records and structures of classes will be packed.

� type
TTeststruct = record

iVar : Integer; { 4 Byte }
dVar : double; { 8 Byte }
bVar : boolean; { 1 Byte }
sVar : Array[1..50] of char; { n * 1 Byte }

end;
� Using packed in Delphi slows data access and, in the

case of a character array, affects type compatibility !

13/34

Syntax Options …

The $IfOpt compiler directive is a meta-directive - it tests for the + or -
state of a single character compiler directive.

{$IfOpt H+}
ShowMessage('Longstrings are set on');

{$EndIf}
It’s useful to report on directive settings at the start of a program, when

testing.

The $V directive controls type checking on short strings passed as
variable parameters. � ex.

The $B directive tells Delphi whether to continue a multi argument
boolean expression evaluation when the result is known before
evaluation completes. � ex.

14/34

syntax options example I

{$B-} //complete boolean evaluation shows cpu asm
function testrestbool(i: integer; mystring: shortstring): boolean;
begin
if (i>0) or (mystring <> '') then result:= true else result:= false;

end;
{$B-} {$B+}
85DB test ebx,ebx 803C2400 cmp byte ptr [esp],$00
7F06 jnle $0045dbb0 0F95C0 setnz al
803C2400 cmp byte ptr [esp],$00 85DB test ebx,ebx
7404 jz $0045dbb4 0F9FC2 setnle dl
B001 mov al,$01 0AC2 or al,dl
EB02 jmp $0045dbb6 7404 jz $0045dbba

B001 mov al,$01
EB02 jmp $0045dbbc

15/34

syntax options example II

The Extended Syntax {$X+} compiler directive determines
whether Delphi includes a number of Pascal language
extensions or not.

1.Treating functions as procedures
2.Using Result in functions
3.Treating Char arrays as strings

The $T directive controls the types of pointer values
generated by the @ operator and the compatibility of
pointer types.

Assignable (writable) typed constants $J are constant
between function calls: to avoid using global variables!

16/34

Compiler and runtime checks

� Controls what run-time checking code is
generated. If such a check fails, a run-time
error is generated. � ex. Stack overflow

� Compiler compiler example:
{$R 'langFile1ekon.res' 'langFile1ekon.rc'}
� Command line compiler also with runtime checks
dcc32 [options] filename [options]
� Build your own compiler stack machine:
maXbox http://www.softwareschule.ch/maxbox.htm

17/34

Which runtime checks ?

� Range checking
Checks the results of enumeration and subset type
operations like array or string lists within bounds

� I/O checking
Checks the result of I/O operations

� Integer overflow checking
Checks the result of integer operations (no buffer
overrun)

� Missing: Object method call checking
Check the validity of the method pointer prior to
calling it (more later on).

18/34

Range checking example

{$R+}
SetLength(Arr,2);
Arr[1]:= 123;
Arr[2]:= 234;
Arr[3]:= 345;

{$R-}
Delphi (sysutils.pas) throws the ERangeError

exception � ex.

19/34

I/O checking example

The $I compiler directive covers two purposes! Firstly to
include a file of code into a unit. Secondly, to control if
exceptions are thrown when an API I/O error occurs.

{$I+} default generates the EInOutError exception when an
IO error occurs. {$I-} does not generate an exception.
Instead, it is the responsibility of the program to check the
IO operation by using the IOResult routine.

{$i-}
reset(f,4);
blockread(f,dims,1);

{$i+}
if ioresult<>0 then begin

20/34

Include Files (parameters)

� The $I parameter directive instructs the compiler to
include the named file in the compilation. In effect, the file
is inserted in the compiled text right after the {$I filename}
directive. The default extension for filename is .pas. If
filename does not specify a directory path, then, in
addition to searching for the file in the same directory as
the current module, unit recompiles if file newer.

� To specify a filename that includes a space, surround the
file name with single quotation marks: {$I 'My file'}.

� � ex.: maXbox pascal script

21/34

Buffer overflow of strings

The Delphi compiler hides the fact that the string variable
is a heap pointer to the structure but setting the
memory in advance is advisable:

//Check against Buffer overflow
var Source, Dest: PChar;
begin
Source:= aSource;
Dest:= @FData[FBufferEnd];
if BufferWriteSize < Count then

raise EFIFOStream.Create('Buffer over-run.');

var buffer: array[0..25] of Char;
buffer:= 'this is too long and so on';

SetString(mystring, buffer, sizeOf(buffer)); � ex. of result

22/34

Buffer overflow of integers

� When overflow checking is turned on (the $Q
compiler directive), the compiler inserts code to
check that CPU flag and raise an exception if it
is set. � ex.

� The CPU doesn't actually know whether it's
added signed or unsigned values. It always
sets the same overflow flag, no matterof types
A and B. The difference is in what code the
compiler generates to check that flag.

� In Delphi ASM-Code a call@IntOver is placed.

23/34

Name Mangling

The cause of diff. problems is the not standardised "name
mangling" of different compilers, which decorates the
signature of an method to guarantee overloading. So the
VC++ compiler (linker) puts some information about types
and parameters on the entry point which the caller doesn't
know.

Decorated names were originally created to allow C++ to
work with legacy linkers (might not understand
uppercase/lowercase, namespaces, class names, and
overloading). In practice these "decorated names" are still
around for reasons of compatibility.

24/34

Prevent Name Mangling

You can work with an index instead of a name in a .def
file and export section (depends on your signature)
C++:
LIBRARY mxlump_dll
EXPORTS
FunctionName1 @1
FunctionName1 @2
ProcedureName1 @3

Solution: Set an alias in the Delphi external declaration:
function CreateIncome2: CIncome; stdcall; external
'income.dll'

name '_CreateIncome';

25/34

Prevent Name Mangling II

You can work in a block to prevent name mangling:
macro NoMangle means ‘extern “C”’
extern "C"

{ __declspec(dllexport) CIncome *CreateIncome();
void __EXPORT_TYPE SayHello2(); }

NoMangle long DLL_IMPORT_EXPORT csp2GetDeviceId(char
szDeviceId[8], long nMaxLength);
//pascal
function csp2GetDeviceId(szDeviceId: PChar; nMaxLength: Longint):
Longint; stdcall; external 'csp2.dll' name 'csp2GetDeviceId';
var myBuffer: array [0..7] of Char;
begin
csp2GetDeviceId(@myBuffer[0], SizeOf(myBuffer));

26/34

Debug Options and Asserts

� Add in a file „compilerdef.inc“ the options D-,L-
,Y-,C- . (switches off all debug information and
asserts too):

accObj:= TAccount.createAccount(FCustNo, std_account);
� assert(aTrans.checkOBJ(accObj),'bad condition with OBJ');

� Use Assert {$C+} as a debugging check to test
that conditions implicit assumed to be true are
never violated (pre- and postconditions). � ex.

27/34

Conditional Directives example

� Does the code functionality could be achieved by using different
API’s?

� function MakeTempFilename: string;
� begin
� {$IFDEF LINUX}
� result:= tempnam(NIL, 'Indy'); {do not localize}
� {$ELSE}
� SetLength(Result, MAX_PATH + 1);
� GetTempFileName(PChar(ATempPath), 'Indy', 0, PChar(result));
� result:= PChar(result);
� {$ENDIF}
� end;

28/34

Call a Client platform independent

begin
{$IFDEF LINUX}
dllhandle:= dlopen(PChar(s2), RTLD_LAZY);
{$ELSE}
dllhandle:= LoadLibrary(Pchar(s2));
{$ENDIF}
if dllhandle = {$IFDEF LINUX} NIL {$ELSE} 0 {$ENDIF} then

{$IFDEF LINUX}
p.Ext1:= dlsym(dllhandle, pchar(copy(s, 1, pos(#0, s)-1)));
{$ELSE}
p.Ext1:= GetProcAddress(dllhandle, pchar(copy(s, 1, pos(#0, s)-1)));
{$ENDIF}

29/34

Workshop system.pas compilieren

� 1.) Zur Sicherheit die beiden DCUs system.dcu und
sysinit.dcu aus dem Lib-Verzeichnis sichern.

� 2.) In der Datei system.pas die Compileroptionen D-,C-,L-
,Y- kontrollieren. (you should have debug information)

� 3.) Shell starten und in Verzeichnis
(C:\Programme\CodeGear\RAD Studio\5.0\bin) wechseln.

� 4.) Das Kommando ausführen
dcc32 -m -y -z ..\source\win32\rtl\sys\system.pas und die
Units system + sysinit werden compiliert.

� 5.) Die neuen dcu Dateien aus dem Source in das lib
Verzeichnis schieben

30/34

Solution: Raise an exception to log

EStackOverflow = class(EExternal) � ex.
end deprecated;

{$Q+}
try
b1:= 255;
inc(b1);
showmessage(inttostr(b1));

//show silent exception
except
on E: Exception do begin
//ShowHelpException2(E);
LogOnException(NIL, E);

end;
end;

31/34

Missing example: Check Object
Proposal to Runtime Checks

function TTrans.checkOBJ(aObject: TObject): boolean ;
var str: string;
i: integer;
begin
result:= false;
if aObject= NIL then exit;
try
str:=ansiUppercase(aObject.classname);
if str= '' then exit;
for i:= 1 to length(str) do

if not (str[i]in['0'..'9','A'..'Z','_']) then exit;
aObject.classType;
if aObject.InstanceSize < 1 then exit;
aObject.ClassnameIs('TObject');

result:= aObject.ClassNameIs(aObject.Classname);
except
exit;

end;
end;

32/34

Test at last: Is this runtime error or
exception handling ?

� function IsDate(source: TEdit): Boolean;
� begin
� try
� StrToDate(TEdit(source).Text);
� except
� on EConvertError do
� result:= false;
� else
� result:= true;
� end;
� end;

33/34

Compiler Tools on board

� DCC32 compiler with JHPNE as option will generate
C++ headers (with .hpp extension) for your units!
DCC32 -JHPHN -N D:\DEV\PPT –O D:\DEV\PPT –U

D:\COMPONENTS\SC2_2\securePtBase.pas
� rundll32 income.dll ‘_SayHello2’ //for short tests
� Dependency Viewer shows the inside of exe and dll’s:

http://delphi-jedi.org/Jedi:CODELIBJCL
� CPU View in debugger � Ctr Alt C

Now: Delphi <=7 Compiler Virus in SysConst.dcu !!

34/34

Questions and hope answers ?

max@kleiner.com

