

maXbox Starter
Start with Programming

1.1 First Step
To start programming isn’t that difficult. You may know, in the very beginning was nothing which
exploded ;). The Starter has been written presuming you don’t have any prior knowledge of
programming or software engineering.
Coding is sort of a discipline between science and art. In no time we will get deep into maXbox or
ObjectPascal programming (OP). It’s just a primer to show the first steps in writing a program. Another
lesson goes deeper with a second step and shows objects, classes and events.
All you need to know is that in this program, we have a procedure and a function, the procedure is
called TestPrimNumbers and it’s purpose is to check numbers if they are prime or not.

1.2 Get the Code
When you work with maXbox you will have a sight very similar to the image below. Using Windows or
Linux will present some differences but the box is pretty much the same no matter what operating
system you are using. The tool is split up into the toolbar across the top, the editor or code part in the
centre and the output window at the bottom.

���� The 4 buttons (speed buttons) in the toolbar provide convenient access to the most commonly used
functions within the menus “files” and “program”.

Before this starter code will work you will need to download maXbox from the website. This can be
done from http://www.softwareschule.ch/maxbox.htm (you’ll find the download maxbox2.zip top left on
the site). Once the download has finished, unzip the file, making sure that you preserve the folder
structure as it is. If you double-click maxbox2.exe the box opens a default program. Test it with F9 or
press Compile and you should hear a sound. So far so good now we’ll open our example.

50_program_starter.txt

The Load button will present you in /examples with a list of programs stored within your directory as
well as a list of /exercises with defective Pascal code to be fixed for training purposes. Alternatively
you can download the file from: http://www.softwareschule.ch/download/50_program_starter.txt
Use the Save Page as… function of your browser1 and load it from examples (or wherever you
stored it). Now let’s take a look at the code of this project. Our first line is

1 program Primtester_3;

We have to name the game, means the program’s name is Primtester_3.

1 Or copy & paste

 2

���� Most of the functions we use like round() or SQRT() are implicit in a library (or unit). A library is a
collection of code, which you can include in your program. By storing your commonly used code in a
library, you can reuse code for many times in different projects and also hide difficult sections of code
from the developer. Once a unit is tested it’s stable to use.

1: The maXbox Tool

The next lines are simply comments in your code and are ignored by the compiler (the part that
translates your code into instructions a computer can understand before executing it).

03 {simple primtester between range for perfomance- an d filehandling

04 has a function and procedure, consts, globals and l ocals, locs = 59

05 shows sequence, selection and iteration (units are implicit)

06 to teach programming for beginners in maXbox!}

Any text entered behind a {or//or(* command will be ignored by the compiler and is simply there
for you, or anyone else that reads or extends your code. Comments are essential in your code to help
you understand what’s going on and how your code works or should work. The tool will automatically
turn the colour of any commented text to blue.

Next we learn how a constant works. Constants are fixed numeric or character values represented by
a name. Constants can’t be changed2 while a program runs. A section starts with the word const:

08 Const

09 FROM_RANGE = 1000 ; //start with even numbers

10 TO_RANGE = 5000 ;

The lines 13 to 15 of the program contain the declaration of 3 variables mylist , beforeTime and
afterTime . Line 14 is declaring a more complex variable, namely an object of type TStringList
(as its name suggests a list of strings). Line 15 is declaring two strings and each variable has a type.

2 You can only change the declaration

 3

���� A type is essentially a name for a kind of data. When you declare a variable you must specify its
type, which determines the set, range and storage of values the variable can hold and the operations
that can be performed on it.

13 var

14 mylist: TStringList; //is an object of class TStringList!

15 beforeTime, afterTime: string;

A variable is a place to store data. In this case you are setting up a variable of type string and
TStringList . Imagine a variable as a small box (in maXbox;)) where you can keep things. A
variable is called a variable because its value can change during the programs execution. But watch
out not every name can hold a variable because you can’t use any of OP's keywords like set, while,
case, if then etc as variable names.

���� Keywords are constants, variables, type and procedure names that are defined as part of the OP
language like var or string above. All keywords within the program will appear in bold.

� So far we have learned something about library, comments and the difference between a
constant and a variable. Now it’s time to run your program at first with F9 (if you haven’t done yet). The
program generates a file called primetest8.txt containing all prime numbers in the range 1000 to
5000. But the output is missing in the window on the bottom and we have to change the code. We just
activate the code line 56, which is currently a comment:

 //memo2.lines.loadFromFile('primetest8.txt')

� After we have removed the // in line 56 and pressed F9 (or Compile) we can see the
numbers in the output window. Just scroll up to the top of the output window

 memo2.lines.loadFromFile('primetest8.txt')

2: The Output Window

The Compile button is also used to check that your code is correct, by verifying the syntax before the
program starts. When you run this code you will see that we catch 501 prime numbers in a set count
up from 1009 to 4999. The time consuming depends on your PC and the goal is to get much larger
primes. The search for ever larger primes has generated interest outside mathematical circles but
there is no known formula yielding all primes!

�So let’s jump back to line 17. This line is our first function called checkPrim() .3

����Because functions return a value, they can be part of an expression. For example, if you define
the function called checkPrim that takes one integer argument and returns a Boolean, then the
function call checkPrim(acti) is a Boolean expression. An expression is a syntactical block that
can be the right side of an assignment within a statement and delivers a value; means an expression
is resolved into a simple value at runtime. (Also each begin must have and end ;).

17 function checkPrim(acti: integer): boolean;

18 var //locals

19 j: integer;

3 We later change the name to CheckPrime

 4

20 isprim: boolean;

21 begin

22 isprim:= true;

23 for j:= 2 to round(SQRT(acti)) do

24 if ((acti mod j) = 0) then begin

25 isprim:= false

26 break

27 end; //if

28 result:= isprim;

29 end;

We have two local variables and isprim is initialised with true (as long the loop proves false). What‘s
the meaning of initialising? It has the purpose to set them to a known value, to true in this case. Then
a for statement in line 23 implements an iterative loop. After each iteration of the loop, the counter is
incremented. Consequently, j is called the loop counter.

23 for j:= 2 to round(SQRT(acti)) do

Then we have our first if Statement:

24 if ((acti mod j) = 0) then begin

If the condition (acti mod j) evaluates to 0, then the number can’t be a prime and break jumps out
of the loop. The mod operator returns the remainder obtained by dividing with j . If the condition is
false, means not 0, then we found a prime and the function returns true in a result value (line 28).

���� The else keyword of the if statement is optional;
Basically a function is a block of code assembled into one convenient block. We create our own
function to carry out a whole series of complicated lines of code, we could run that code as many
times as we like simply by calling the function name instead of writing out the code again.

�Next we go to line 32 and define our first procedure.

procedure TestPrimNumbers(Vfrom_range, Vto_range: integer);

A procedure (call) consists of the name of a procedure (with or without qualifiers), followed by a
parameter list (if required). Functions return a value where procedures must not! Most functions and
procedures require parameters of specific types. As we already know a type is just a name for a kind
of data and parameters must have the types of a language or self defined ones.

���� The parameters Vfrom_range, Vto_range of type integer declared in the procedure do have
automatic scope and only live during the execution of the procedure or function. Next we need to init-
ialise a variable to be the start number of the loop. So we set up variable count and assign it to zero:

35 count:= 0; //init

Then an object variable called mylist is constructed4. For our example, the TestPrimNumbers
procedure creates a TStringList object and fills it with the found prime numbers. We then set a
condition to decide how many times the code in the loop will execute.

37 for acti:= Vfrom_range to Vto_range do

In this case the code will loop from acti is greater than (>=) 1000 and smaller than (<=) 5000. The
code within a for loop normally execute once no matter what the condition is set to. Now to line 39;
here we are telling the compiler that our procedure is calling checkPrim (), that it passes a number
and returns true if the number is prime and adds the number to the list mylist .

4 More on objects in a Second Step

 5

Then we have another if statement.

���� You remember that function calls are expressions.
Now remember the checkPrim takes one integer value as a parameter and returns a boolean value
in turn. Therefore we can call the function directly as the conditional expression:

39 if checkPrim(acti) then begin

If the expression is true, then the statement is executed, otherwise it’s not. By the way, do you know
the caller? It’s in our case the procedure which calls a function!

����� If we call the function without the parameter (acti) then we get: Invalid number of
parameters, try it (you pass no parameters to it (empty parenthesis)). Therefore each function or
procedure has its own signature; that is the routine's name, parameters, and return type (for
functions).

32 procedure TestPrimNumbers(Vfrom_range, Vto_range: integer);

33 var acti, count: integer;

34 begin

35 count:= 0; //init

36 mylist:= TStringList.create;

37 for acti:= Vfrom_range to Vto_range do begin

38 inc(acti) //only odd numbers check

39 if checkPrim(acti) then begin

40 inc(count)

41 mylist.add(intToStr(count) + ': ' +intToStr(acti))

42 end //if

43 end //for

44 end;

The TestPrimNumbers procedure receives as parameters two integer values (32 bit number), which
will be our start and end numbers between 1000 and 5000 for the iteration. Of course you can change
them. We have chosen integer for this usage as it’s a common used type. If you change it to a byte
type (exactly 8 bits in length) you could only pass values from 0 to 255 to the procedure!

� Try to change the consts declaration for example from 10000 to 20000 in line 9 and 10! How
many primes you get and how long it’ll last?

���� A function is called with actual arguments placed in the same sequence as their matching formal
parameters. For example, checkPrim(acti) is the actual parameter as the caller (or sender) and
function checkPrim(acti: integer): boolean; is the formal parameter called acti as the
receiver. Therefore a function can be used in many calls.

� Try it with the procedure TestPrimNumbers() : Where is the caller (actual arguments) and in
which line is the receiver?

� Yes the caller is TestPrimNumbers(FROM_RANGE, TO_RANGE) in line 50 of the main routine
and the receiver is line 32 with the signature of the procedure: TestPrimNumbers(Vfrom_range,
Vto_range: integer);

This is what we call an interface in the way software works; the interface declaration of a procedure or
function includes only the routine's signature.

����Because maXbox can't have a direct access to the C Lib of the API5 all functions are wrapped in the
interface with the help of the VCL (Visual Component Library) or the CLX (Kylix with CLX runs on
Linux). Also the main program is just a wrapper around a main win loop.

5 Application Programming Interface

 6

1.3 The Main Routine (PrimeTime)
An OP program must have a main routine between begin and end. The main routine is run once and
once only at the start of the program (after you compiled) and is where you will do the general instruct-
ions and the main control of the program.
The most important elements that I will present here are: TestPrimNumbers(FROM_RANGE,
TO_RANGE); as you already know as the caller and mylist.saveToFile('primetest8.txt');
(as the generator of the file).
The Main starts in line 47. In line 49 we are telling the compiler to call a function named Now(); It
simply returns the current system time and date. We pass no parameters to it (empty parenthesis or
no parenthesis).

49 beforeTime:= Now();

The beforeTime variable will be used to store the time difference we are going to display on the
output window below. Normally Now does have the type like time or Now2 from TDateTime but as a
simplification it’s a string. If you change Now() to Time() you get this:
PSXCompiler: [Error] D:\kleiner2005\TestApp\maxbox2\50_program_starter.txt(51:19): Type mismatch

3: Performance in Output

With the procedure writeln() in line 52 you write data to the output window. Next I have to say
something about file handling. First you have to define a file name for the data to save and load. The
actual file name in line 55 is: “primetest8.txt ”. You can edit this file name directly and you can set
an absolute path or a relative one in the procedure6 saveToFile() :

mylist.saveToFile('C:\myPrimeName.txt')

But as a developer you are responsible for every aspect of the data access. In short, before any data
access can occur, data must be write (save) and read (load) from the same file and stored in memory.
So make sure the method loadFromFile() has the same file name too:

 memo2.lines.loadFromFile('C:\myPrimeName.txt')

�How can you improve the situation that only one file name exists? Yes, you define a constant:

Const

 PRIMEFILE = 'C:\myPrimeName.txt';

And then you alter the two procedures (or methods):

mylist.saveToFile(PRIMEFILE)

memo2.lines.loadFromFile(PRIMEFILE)

� we will do that because these two methods are the corner stone of the Import / Export possibility in
this program. By the way: It’s a convention to write a constant name in CAPITAL LETTERS.
Next in line 56, if a data file with your const or whatever defined name already exists, it is opened and
the previously stored data is read from it. In our case the data is loaded to a component called
memo2, which is a part of the output window (memo2 of class TMemo which is serving both as a
memory structure for holding the data and as a visual control for navigating and editing the data).

6 We call it a method because it belongs to an object

 7

//main program

begin

 //time performance

 beforeTime:= Now;

 TestPrimNumbers(FROM_RANGE, TO_RANGE);

 afterTime:= Now;

 writeln('start: ' + beforeTime + ' from: ' +intToStr(FROM_RANGE))

 writeln('stop: ' + afterTime + ' to: ' +intToStr(TO_RANGE))

 mylist.add(memo2.text)

 mylist.saveToFile('primetest8.txt')

 memo2.lines.loadFromFile('primetest8.txt')

 mylist.Free;

end.

�The basic concept here is that we have a main routine that executes 4001 (1000 to 5000) times
a check function. In that routine we simply take a look at the content of each number (whether prime or
not) and display it on output and write it down to a file with the help of a class called TStringList .
The data structure is sort of a direct file access. You can always use a memo or a grid to display a
result, but if you don’t need the overhead of a data aware component or you don't want a database in
an embedded system, direct file access with a stringlist can be a choice.

One note about this primer; there will be better solutions (executei a thread or a thieveii) and we still
work on it for educational reasonsiii, so I'm curious about comments, since I intend to publish
improvements of this code in a basic chat on sourceforge.net depending on your feedback ;)

1.3.1 Code Warrior
We can state that for educational reasons its better to begin programming in a procedural way
followed by OOP. In procedural programming (which predates OOP), you create constants, variables,
functions, and statements. Those have to be learned before OOP. I would say that even OOP is

 8

tougher to learn and much harder to master than procedural coding, you better learn it after having
achieved procedural thinking. Truth is that almost anything which can be done procedurally can also
be done using objects and vice versa.
Let’s go back on track and do a last exercise. The final menu is the Help menu where you can find
more information on the language or links to the reference pages of the maXbox site and other useful
pages. A Code Warrior also knows a lot about debugging. As I promised we won’t go any deeper, but
as a simple preview try the code once with the magic “step into” F7. It really shows you step by step
how the code works!

���� With a right mouse click on the pop up menu in the editor you can set so called breakpoints
and study the source from which point you want or use different steps to execute and stop from. As a
last exercise you may have noticed that the name of prim is different to prime. This call for a change
(we talk about refactoring ;)) of names:

� Change the name from prim to prime (e.g. from TestPrimNumbers to
TestPrimeNumbers() and from checkPrim to checkPrime()

� Think about the dependencies of names and rate of changes if the compiler throws an
error like “Unknown identifier” but I’m sure you got it.

� This is a so called Call Tree: [1]
50_program_starter.main block (50i)

50_program_starter.TestPrimNumbers (32i)

 50_program_starter.checkPrim (17i)

� That’s all folks, may the source be with you for the first step and I hope to see you in second step.

Feedback @

max@kleiner.com

Many thanks to the Reviewer Team (Dr. Silvia Rothen, Beat Strähl,
Beat Fankhauser, Dr. Andreas Fuchs)

Literature:
Kleiner et al., Patterns konkret, 2003, Software & Support

Links of maXbox and Prime Numbers:

http://www.softwareschule.ch/maxbox.htm

http://www.softwareschule.ch/

http://en.wikipedia.org/wiki/Prime_number

http://sourceforge.net/projects/maxbox

The Document itself:

http://www.softwareschule.ch/download/maxbox_starter.pdf

 9

1.4 Appendix

1.4.1 Code in OP

program Primetester_3_Plus; //optimized

//based on: http://www.softwareschule.ch/download/5 0_program_starter.pdf

{ simple primetester between range for perfomance- and filehandling

has a function and procedure, consts, globals and l ocals

shows sequence, selection and iteration (units are implicit)}

const

 FROM_RANGE = 1000; //start with even number

 TO_RANGE = 5000;

 PRIMEFILE = 'primetest9.txt';

//globals

var

 mylist: TStringList; //is an object of class TS tringList!

 beforeTime, afterTime: string;

function checkPrime(acti: integer): boolean;

var //locals

 j: integer;

 isprim: boolean;

..myIdx: integer

begin

 isprim:= true;

 myIdx:= round(SQRT(acti))

 for j:= 2 to myIdx do

 if ((acti mod j) = 0) then begin

 isprim:= false

 break

 end; //if

 result:= isprim;

end;

procedure TestPrimeNumbers(Vfrom_range, Vto_range: integer; vlist: TStringList);

var acti, count: integer;

begin

 count:= 0; //init

 for acti:= Vfrom_range to Vto_range – 1 do begin

 inc(acti)

 if checkPrime(acti) then begin

 inc(count)

 vlist.add(intToStr(count) +': '+intToStr(acti))

 end //if

 end //for

end;

//main program

 10

begin

 //time performance

 beforeTime:= Now;

 mylist:= TStringList.create;

 TestPrimeNumbers(FROM_RANGE, TO_RANGE, mylist);

 afterTime:= Now;

 writeln('start: '+ beforeTime + ' from: '+intToSt r(FROM_RANGE))

 writeln('stop: ' + afterTime + ' to: '+intToStr(T O_RANGE))

 mylist.add(memo2.text)

 mylist.saveToFile(PRIMEFILE)

 memo2.lines.loadFromFile(PRIMEFILE)

 mylist.Free;

 //orthogonal and idempotent!

end.

1.4.2 Code in C++

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <string>

#include <list>

#include <cstdlib>

#include <iostream>

#include <fstream>

#include <sstream>

#include <time.h>

#include <math.h>

using namespace std;

#define FROM_RANGE 1000

#define TO_RANGE 5000

static bool checkPrime(int aPotentialPrimeNumber)

{

 bool isprim = true;

 for (int j = 2; j<=round(sqrt(aPotentialPrimeNumber)); j++)

 if (aPotentialPrimeNumber % j == 0)

 {

 isprim = false;

 break;

 }

 return isprim;

}

static void testPrimeNumbers(std::list<string> &primeNumbersFound, int fromRange, int toRange)

 11

{

 int primesFound = 0;

 for (int potentialPrimeNumber = fromRange; potentialPrimeNumber<=toRange; potentialPrimeNumber++)

 if (checkPrime(potentialPrimeNumber))

 {

 primesFound += 1;

 stringstream str;

 str << primesFound << ": " << potentialPrimeNumber << endl;

 primeNumbersFound.push_back(str.str());

 }

}

int main(int argc, char *argv[])

{

 time_t t;

 time(&t);

 string beforeTime = ctime(&t);

 cout << beforeTime;

 list<string> primeNumbers;

 testPrimeNumbers(primeNumbers, FROM_RANGE, TO_RANGE);

 time(&t);

 string afterTime = ctime(&t);

 cout << afterTime;

 ofstream f("primtest8.txt");

 for (list<string>::iterator it = primeNumbers.begin(); it != primeNumbers.end(); it++)

 f << *it;

 return EXIT_SUCCESS;

}

--- --------------------------------

--- --------------------------------

//Second Step Notices with: if then else, call by r eference, pointer, type, object,

class, try except and events available on April 2010 as maXbox_starter2.pdf

// if then else example

begin

 isprim:= true;

 for j:= 2 to round(SQRT(acti)) do begin

 if ((acti mod j) = 0) then begin

 isprim:= false

 break

 end else writeln('next check with j');

 12

 end;

 result:= isprim;

end;

// without isprime only with result

function checkPrim(acti: integer): boolean;

var //locals

 j: integer;

begin

 result:= true;

 for j:= 2 to round(SQRT(acti)) do

 if ((acti mod j) = 0) then begin

 result:= false

 break

 end;

 result:= result;

end;

--- -------------------------------

���� Aim

���� Introduction to a new topic

���� Important Information

				 Code example

���� Analysis of Code

� Lesson

 Test

� Summary

� Congratulation

i Examples\primetester_14project.exe (compiled version)
ii Examples\50_pas_primetester_thieves.txt
iii Examples\14_pas_primetest.txt (simple)

