
//

Image to Text API
__

maXbox Starter 103 – Text recognition of characters in
images.

“A picture is worth a thousand words.
 An interface is worth a thousand pictures.”.

This API recognizes and reads a text embedded in pictures or photos.
Image to Text API uses a neural net (LSTM) based OCR engine which is
focused on line recognition, but also supports recognizing the character
patterns. It supports both handwriting and printed materials as well as
street maps.
APILayer is an API marketplace where also your API can reach a broader
audiences, but first you need an API-key for free:

The result of a simple subscription will be the screenshot below:

Pic: 1176_apilayer_reg.png

This register allows you a monthly usage of 30 successful calls. Almost
all API's has a free plan to subscribe. Looking at the following book-
cover, it will extract the text information easily, even though the cover
has shadows and positioned with angle.

We use WinHttp.WinHttpRequest, JSONObjects and TGraphics library with
loading and testing the REST-client. Also we pass the API-key as a
request-header, so get a key first at: https://apilayer.com/marketplace

You can also use a powerful 'OCR' feature (text in picture recognition)
to extract text from an image during the conversion process. In this

 1/6

https://apilayer.com/marketplace

case, you will get an editable text document as a result that you can
adjust and modify as you need.

The data represents is JSON data with all the text extracted and even the
language of the text to scan is auto detected. Before we dive into code
this is the main part of the script:

function Image_to_text_API2(AURL, url_imgpath, aApikey: string): string;
var httpq: THttpConnectionWinInet;
 rets: TStringStream;
 heads: TStrings; iht:IHttpConnection2;
begin
 httpq:= THttpConnectionWinInet.Create(true);
 rets:= TStringStream.create('');
 heads:= TStringlist.create;
 try
 heads.add('apikey='+aAPIkey);
 iht:= httpq.setHeaders(heads);
 httpq.Get(Format(AURL,[url_imgpath]),rets);
 if httpq.getresponsecode=200 Then result:= rets.datastring
 else result:='Failed:'+
 itoa(Httpq.getresponsecode)+Httpq.GetResponseHeader('message');
 except
 writeln('EWI_HTTP: '+ExceptiontoString(exceptiontype,exceptionparam));
 finally
 httpq:= Nil;
 heads.Free;
 rets.Free;
 end;
end;

The main part function opens a connection, invokes the API and results a
stream which we convert to a datastring.
Image2Text or Image to Text live demo is providing an API service on its
APILayer publication platform. Live Demo feature allows you to test the
API within your browser; no need to install or code anything. You can
modify all the parameters as you like and interact with the API from many
languages. The API export format is JSON, e.g. our book cover see below:

 2/6

Pic: 1176_apilayer_livedemo.png

The published result datasets are based on LSTM in combination with a
OCR. LSTM stands for Long Short-Term Memory and is a type of Recurrent
Neural Network(RNN). Talking about RNN, it is a network that works on the
present input by taking into consideration the previous output (feedback)
and storing in its memory as memory cells for a short period of time
(short-term memory). For example take our book-cover as input:

Pic: 1176_uml_buch.jpg

LSTMs have feedback connections and cells which make them different to
more traditional feed-forward neural networks with the still existing
vanishing gradient problem. This property enables LSTMs to process entire
sequences of data (e.g. time series, handwriting or sentences) without
treating each point in the sequence independently, but rather, retaining
useful information about previous data in the sequence like
"Objektorientiert", "modellieren", "und", "entwickeln" as a context. The
output of the call

writeln(Image_to_text_API2(URL_APILAY, URLIMAGEPATH4,
 'DNwCF9Rf6y1AmSSednjn8ZhAxYXr----'));

is the JSON datastring in about Runtime: 0:0:3.859:

{"lang": "de", "all_text": "ih \u00bb Der Entwickler\nFachwissen f\u00fcr Programmierer\nMax
Kleiner\nUML\nmit Delphi\nObjektorientiert modellieren\nund entwickeln\nSoftware & Support",
"annotations": ["ih", "\u00bb", "Der", "Entwickler", "Fachwissen", "f\u00fcr", "Programmierer", "Max",
"Kleiner", "UML", "mit", "Delphi", "Objektorientiert", "modellieren", "und", "entwickeln", "Software",
"&", "Support"]}

 3/6

Also the well known Tesseract 4.0 (like OmniPage) added a new OCR engine
based on LSTM neural networks.

The API can also be triggered with this few lines of P4D code:

procedure PyCode(imgpath: string);
begin
 with TPythonEngine.Create(Nil) do begin
 pythonhome:= 'C:\Users\max\AppData\Local\Programs\Python\Python36-32\';
 try
 loadDLL;
 ExecString('import requests');
 ExecStr('url= "https://api.apilayer.com/image_to_text/url?
 url='+imgpath+'"');
 ExecStr('payload = {}');
 ExecStr('headers= {"apikey": "dy5L70eQx72794XBZ8sewEgYTZR85----"}');
 Println(EvalStr('requests.request("GET",url, headers=headers,
 data=payload).text'));
 except
 raiseError;
 finally
 unloadDLL;
 free;
 end;
 end;
end;

When you fail with a restricted call or an invalid key you get a bunch of
exceptions like the following:

winininet_error: Unauthorized (401). or {"message":"Invalid authentication credentials"}

The fact that error code is not "one of the expected return values" tells
for the versions that the error comes from an underlying layer and this
API just passes it up on internal failure.
To shine a bit more light on those errors a function exists to convert
the ErrorCode to a string for better understanding:

function GetWinInetError(ErrorCode:Cardinal): string;
const
 winetdll = 'wininet.dll';
var
 Len: Integer;
 Buffer: PChar;
begin
 Len:= FormatMessage(
 FORMAT_MESSAGE_FROM_HMODULE or FORMAT_MESSAGE_FROM_SYSTEM or
 FORMAT_MESSAGE_ALLOCATE_BUFFER or FORMAT_MESSAGE_IGNORE_INSERTS or
 FORMAT_MESSAGE_ARGUMENT_ARRAY,
 Pointer(GetModuleHandle(winetdll)), ErrorCode,0, @Buffer,SizeOf(Buffer),nil);
 try
 while (Len > 0) and {$IFDEF UNICODE}(CharInSet(Buffer[Len – 1],[#0..#32,
 '.'])) {$ELSE}(Buffer[Len- 1] in [#0..#32, '.']) {$ENDIF} do Dec(Len);
 SetString(Result, Buffer, Len);
 finally
 LocalFree(HLOCAL(Buffer));
 end;
end;

 4/6

https://api.apilayer.com/image_to_text/url

Our final example is an interesting one. What about an old wine bottle
(1993) with shapes (and grapes :-)), an old historic painting from 1619,
dates, symbols and position angles_:

pic: 1176_wine_test.jpg
https://my6code.files.wordpress.com/2022/12/wine_1993_20221230_141947.jpg?w=768

And the result is convincing, also the fact that the year in the label
image was recognized correctly as 1619:

{"lang": "it", "all_text": "DS\nPODERE CAPACCIA\n1619\nLuggo deffo
apacia\nQUERCIAGRANDE\nVino da tavola della Toscana\n1993\nProdotto e imbottigliato
all'origine\nPodere Capaccia\nPacini Giampaolo & C. s.a.s.\nRadda in Chianti (SI) - Italia\nItalia",
"annotations": ["DS", "PODERE", "CAPACCIA", "1619", "Luggo", "deffo", "apacia",
"QUERCIAGRANDE", "Vino", "da", "tavola", "della", "Toscana", "1993", "Prodotto", "e",
"imbottigliato", "all'origine", "Podere", "Capaccia", "Pacini", "Giampaolo", "&", "C.", "s.a.s.", "Radda",
"in", "Chianti", "(", "SI", ")", "-", "Italia", "Italia"]}

Any missing or incomplete data is difficult to find without knowing the
original. But on the other side, it is very easy to use since users just
need to screenshot the part they wish to convert and then copy the text
after.
Furthermore the API access is provided in a REST-like interface
(Representational State Transfer) exposing database resources or pre-
trained models in a JSON format with content-type in the Response Header.
Note: If a programming language is not listed in the Code Example from
the live demo, you can still make API calls by using a HTTP request
library written in our programming language, as we did with GET or POST.

 5/6

https://my6code.files.wordpress.com/2022/12/wine_1993_20221230_141947.jpg?w=768

Pic: 1176_apilayer_demo_mX4.png

Conclusion:
The Image to Text API from APILayer detects and extracts text from images using
state-of-the-art optical character recognition (OCR) algorithms in combination
with a neural network called LSTM. It can detect texts of different sizes,
fonts, and even handwriting or difficult numbers.

Reference:

https://apilayer.com/marketplace/image_to_text-api
https://apilayer.com/docs

https://my6.code.blog/2022/09/02/webpostdata/
http://www.kleiner.ch/kleiner/images/uml_buch.jpg

Doc and Tool: https :// maxbox4 . wordpress . com

Script Ref: 1176_APILayer_Demo1.txt

Appendix: A Delphi REST client API to consume REST services written in
any programming language with a class from maXbox4 integration:
https://github.com/fabriciocolombo/delphi-rest-client-
api/blob/master/src/HttpConnectionWinInet.pas

The API it is designed to work with Delphi 7 or later; newer versions
takes advantage of Generics Methods.
https://github.com/fabriciocolombo/delphi-rest-client-api

 Max Kleiner 12/01/2023

 6/6

https://github.com/fabriciocolombo/delphi-rest-client-api
https://github.com/fabriciocolombo/delphi-rest-client-api/blob/master/src/HttpConnectionWinInet.pas
https://github.com/fabriciocolombo/delphi-rest-client-api/blob/master/src/HttpConnectionWinInet.pas
http://www.kleiner.ch/kleiner/images/uml_buch.jpg
https://my6.code.blog/2022/09/02/webpostdata/
https://apilayer.com/docs
https://apilayer.com/marketplace/image_to_text-api
https://maxbox4.wordpress.com/
https://maxbox4.wordpress.com/
https://maxbox4.wordpress.com/
https://maxbox4.wordpress.com/
https://maxbox4.wordpress.com/
https://maxbox4.wordpress.com/
https://maxbox4.wordpress.com/

		2023-01-13T08:49:21+0100
	maXbox4exe

