s

Classify CifarlO

maXbox Starter 105 — CIFAR-10 Image Classifier with
loading and testing a pre-trained model.

“Train your models during night - called night train ,-)".

This machine learning tutor explains a classifier based on the so called
CIFAR-10 Image Classifier with a pre-trained model.
The pre-trained model is a file: ClassifyCNNModel 70.nn

As the name implies, it is a CNN-model. A Convolutional! Neural Network

(CNN) is a type of deep learning algorithm that is particularly for image
recognition and object-detection tasks. It is made up of multiple layers,
including convolution layers, pooling layers, and fully connected layers.

Now let’s have a look at the app/script below with individual images from
Cifar test data. For this, we wrote two useful functions. The first one
returns the label associated with predictions made by the model. The
second one accepts one image as an argument. Then it will show the image,
the prediction the model made and the actual class the image belongs to.
Also other probabilities are shown in the multi-classification grid:

E Form1 maXbox CAl_Classify 1.5 s O X
I!E: predicts: ship load: . \model\ClassifyCNNModel_70.nn
dropout: []
'.\data‘mh: 1.bmp v
type probability +-[-60,90]
airplane 4,73834943771362
automobile |3.57388186454773
" bird -2,46890497207642
cat -4,34820127487183
i deer -5.9130539894104
. |dog -5.9897141456604
| |[frog -5.56393814086914
" | horse -4,31041717529297

' 15.2397747039795
truck -0.136169910430908
Pic:1135 classifiergui2 tutorl05.png

This app allows you to classify pictures from an airplane to a truck or a
train. And you see similarities for example a ship (15.2) has some
elements of an airplane or automobile (4.7, 3.5) in his feature map.

1 CNNs also known as Shift Invariant or Space Invariant Artificial NN.

1/8

Specifically, models are comprised of small linear filters and the result
of applying filters called activation maps, or more generally, feature
maps. Looking at the following dataset, it will extract features in a
constant dot product, even though images has shadows or positioned with
various angle. It is important to note that filters acts as feature
detectors from the original input image, in our case 32*32 bitmaps.

Const PICPATH = '.\data\';
TRAINPATH '.\model\ClassifyCNNModel 70.nn';

The proper way to use a CNN doesn’t exists. The advice for ugly score is
to use a smaller learning rate or larger batch size for the weights that
are being fine-tuned and a higher one for the randomly initialized
weights (e.g. the ones in the softmax classifier) TNNetSoftMax. Pre-
trained weights (in ClassifyCNNModel 70.nn) are already good, they need
to be fine-tuned, not distorted.

Here are the classes in the dataset, as well as 10 random images from each:

airplane %.% upu-r'..:.-h_l
automobile E HEH HE‘
s Emal WS S

-+
cat ol Rt LR .
oo TN S
* } i 4 Il o

s [HESES BRI a B
rog i N I N 1 I S R
orse i N R S 9 1 S O R T
e e el S
s R = S S

Pic:1135 visualcifarset.png

truck

The learning rate is the crucial hyper-parameter used during the training
of deep convolution neural networks (DCNN) to improve model accuracy;

By following these ways you can make a CNN model that has a validation
set accuracy of more than 95 % but the question is how specific or
relevant is this validation.

In our example, values smaller than 0.7 mean false while values bigger
than 0.7 mean true. This is called monopolar encoding. CAI also supports
bipolar encoding (-1, +1). Let's have a look directly into the source

code for the labels and the classify method:
var cslOLabels: array[0..9] of string;

procedure setClassifierlLabels;
begin

2/8

cslQLabels[0]:= 'airplane';
cslOLabels[1l]:= 'automobile';
cslOLabels[2]:= 'bird';
cslOLabels[3]:= 'cat';
cslOLabels[4]:= 'deer';
cslQLabels[5]:= 'dog';
cslQLabels[6]:= '"frog';
csl0Labels[7] := 'horse';
cslQ0Labels[8]:= 'ship';
csl0Labels[9]:= 'truck';
end;

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes,
with 6000 images per class. There are 50000 training images and 10000
test images. The dataset is divided into five training batches and one
test batch, each with 10000 images.

We now build the Convolution neural network by using 1 Convolution layer,
4 Relu-activation function, dropout- and pooling-layer, 1 fully Connected
layer and a SoftMax activation function. Below is the list of all layers
which we also define the optimizer and a loss function for the optimizer:

Debug TNNet.Struct.LoadFromString ST:

-1) TNNetInput:32;32;3;0;0;0;0;0

0) TNNetConvolutionLinear:64;5;2;1;1;0;0;0
1) TNNetMaxPool:4;4;0;0;0;0;0;0
2) TNNetConvolutionReLU:64;3;1;
3) TNNetConvolutionRelLU:64;3;1
4) TNNetConvolutionReLU:64;3;1;
5) TNNetConvolutionRelLU:64;3;1
6) TNNetDropout:2;0;0;0;0;0;0;0

7) TNNetMaxPool:2;2;0;0;0;0;0;0

8) TNNetFullConnectLinear:10;1;1;0;0;0;0;0
9) TNNetSoftMax:0;0;0;0;0;0,;0;0

The main procedure to classify incoming images loads the model, decides
dropout or not (later more) and creates input- and output-volumes with
the shape of 32;32;3 or a 32x32x3 volume:

begin
NN:= THistoricalNets.create; //TNNet.Create()
NN.LoadFromFile (TRAINPATH) ;
label2.caption:= 'load: '"+TRAINPATH;

if chkboxdrop.checked then
NN.EnableDropouts (true) else
NN.EnableDropouts (false) ;
pInput:= TNNetVolume.CreateO (32, 32, 3, 1);
pOutPut:= TNNetVolume.CreateO (10, 1, 1, 1);

LoadPictureIntoVolume (imagel.picture, pinput);
pInput.RgbImgToNeuronalInput (csEncodeRGB) ;

NN. Compute65 (pInput,0) ;

NN.GetOutput (pOutPut) ;

writeln ('result get class type: '+itoa (pOutPut.GetClass()))

Then, we need to add RgbImgToNeuronallInput and with the use of SoftMax,
we can print output class probabilities to show in the Stringgrid.

3/8

The *.nn file in TRAINPATH serves as a pre-trained file (FAvgWeight) to
classify/predict images we trained on. Also the CIFAR-10 classification
examples with experiments/testcnnalgo/testcnnalgo.lpr and a number of
CIFAR-10 classification examples are available on /experiments.

Imagine the accuracy goes up and the loss-function (error-rate) goes
down. The loss function is the bread & butter of modern machine learning;
it takes your algorithm from theoretical to practical and transforms
matrix multiplication into deep learning.

Drop out experiments

It’s usually very hard to understand neuron by neuron how a neural
network dedicated to image classification internally works.

In this technique, an arbitrary neuron is required to activate and then
the same back-propagation method used for learning is applied to an input
image producing an image that this neuron expects to see.

Adding neurons and neuronal layers 1is often a possible way to improve
artificial neural networks when you have enough hardware and computing
time. In the case that you can’t afford time, parameters and hardware,
you’ll look for efficiency with Separable Convolutions (SCNN).

But there's another for me interesting point, the dropout regularization.
The dropout layer is a mask that nullifies the contribution of some
neurons towards the next layer and leaves unmodified all others. In our
model you can see layer 6 as the dropout:

6) TNNetDropout:2;0;0;0;0;0;0;0
We can apply a Dropout layer to the input vector, in which case it

nullifies some of its features; but we can also apply it to a hidden
layer, in which case it nullifies some hidden neurons.

' B Form1 maXbox CAI_Classify 1.5 - (] X

:E predicts: ship load: . \model\ClassifyCNNModel_70.nn

|

[dropout:

:;muwwump V:
Classify

type probability +-[-60,90]

airplane 4.47282934188843

‘|automobile [3.79808974266052

" bird -2.12839460372925

lat -4.58801412582397

* deer -7.49178743362427

" 'dog 4.86960697174072

' frog 4.57777881622314

horse 4.,80298376083374

| 17.1345500946045
| truck -0.175311326980591
|

Pic:1135 classifiergui3 tutorl05.png

Dropout is a technique where randomly selected neurons are ignored during
training. They are "dropped out" randomly. Every time you click on

4/8

Classify you get another result in small changes. The ship in the first
screen is classified with 15.2 now above with 17.1. This means that their
contribution to the activation of downstream neurons is temporally
removed on the forward pass, and any weight updates are not applied to
the neuron on the backward pass. If you want a comparable result,
deactivate the checkbox. So what's the advantage of dropout? You can
imagine that if neurons are randomly dropped out of a network during
training, other neurons will have to step in and complement the repres-
entation required to make predictions for those missing neurons.

The effect is that a CNN (or whatever deep learning nn) becomes less
sensitive to some specific weights of neurons. This in turn, results in a
network capable of better generalization and less likely to specialise
training data, means you get on the average with new or in training
unseen pictures a better result. For example we take a new picture out of
the known classification labels. For this we convert the picture at first
as a cifar 32*32 24-bit bitmap:

Resize and Skew s

Resize

By: (O Percentage (@) Pixels
=

Horizontal: 321
_l I Vertical: | 3z

[] Maintain aspect ratio

Skew (Degrees)
— r
i Haorizontal: 0

;’J 1 Vertical: 0

Pic:1135 resizebitmap tutorl05.png

Then we load the picture as *.bmp (just drop in the ./data directory and
try to classify an unknown class with unseen training, but and that's
sort of surprising, we get a result:

" [Form1 maXbox CAI_Classify 1.5 = m] %

ﬂ predicts: dog " S load: . \model\ClassifyCNNModel_70.nn
ey
{ " dropout: |

! [C:\maxbox |EKON_BASTA\EKON24\examples\Machinel eamingPackage 1. |

[t]

; type probability +[-60,90]

. arplane -4.779610157012%4

" 3utomoble |0.568881273260653
bird 1.89292025566101
at 2.20523118972778

deer -3.57288312911987

ﬁ4.4562029838562

frog 2.97085785865784
horse 2.20107984542847
*[ship 4.55240261856079

truck 0.203561782836914

Pic:1135 dropout tutorl05.png

5/8

So the result is devastating and amazing too, somewhat between dog and
horse is the kind of bionics!

But this can be a baseline for similarities in a recommender system or
you can classify the age or sex of a person, enable also in a gender gap
research. In our model, a new dropout layer between TNNetConvolutionReLU
(activation layer) and the hidden layer TNNetMaxPool was added. You can
also make them visible, but its more art than science or more science
than fiction:

e CAl Gradient Ascent Example by maXboxd = E =
|
Load Neural Network... Layer: 7 - ThiNetDropout 7 [strong Input
[CJForce Input Range
A B

2.' .

Pic:1135 dropout tutorl05.3pg

This visual technique above used to help with the understanding about
what individual neurons represent is called Gradient Ascent. You can find
more about gradient ascent at http://vosinski.com/deepvis.

In the archive MachineLearningPackage.zip you find the script, model and
data you need, which works with Lazarus, Jupyter and maXbox too:

Lo
Eibe Edit Seasch View Sgurce Project Bun Pagkage Jooks MWindow Help
told-B|F | ®- Standard Additionsl Common Controls Dialogs Data Controls Data Access System SOLdb Misc SyEdit LazComwols RTTI IPro Chan Pascal Serpt
Qaje-r-napEa D @RS HEE RN
Components fier Y R et |
(=] Label1: TLabel - ¢ M E‘" W. | ok A ’- *
~ [5] StringGri1: TtringGrid = T S—— 2
! Columng TGridColumns : ﬂ @ u E] . ,-—' B ,‘J ,"J } Iﬁ Lﬂ w [13 1135 msy\r chlmmageszmtorjms | |
_: meb::o:;:conmsax : ijunit classify cifarl0) images2lazTutor3; | A || Interface List: 1135_dassify_cifarl0images2tutor3.pas
= tabeiz: v
| /9 om - o x ||@ procedure TFarm1 Button] Click(Sender: TObject);
Properties |{filter) & Y, E -) | procedure TForm]ComboBoxi Change(Sender: TObje
Propertes Events Favorites Res <['] | 4 i £ R Amoden CHSIYCritModeL 70 EE prects: thp load: . ymode\ClassfyCHNMcdel_T0.00 pr::euum YFarm:IFvnn(‘I.tMle(Smder Tobject);
= | procedure setClassifie
sign 2lNone - | ¢ 7 atishintong i procadure SetCommAFuINIEN(Grid: Ts:.mgcna Al
Al i /7 clagsify u = procedure
L AL a %, - 1| [amorim <] pracedure TForm1Button Cick{Sender: TObject);
* [Anchors | [akTop.akd.eft] | Type ! B procedure TForm1ComboBoxl Change(Sender: TObject]
AutaSize | [(True) 1 ol f airplane 3788859558 | III procedure Ibar-:‘m]\;Fnrmcmate(semr:Tobjed);
= e 1 | procedure ATFarm;
BidiMode | bleftToRight | u automobile | 1663360136 e ercbobty +{-600,900] Loes: 264 - code blocks: 10
> |BorderSpaci (FControlBorderSpaci { 12(inglied 1224709548 =
- EEE vese z | 13 a e Frm | ke
RKanione o 4| fud e |-soz091255 utomable | 145, 184524536133
> |Constraints | (TSizeConstraints) | ;: dog |-353.3885803 < bed | srszmosusass:
Cursor | crDetault 1 = i |-431.0452735 [210.652450561523
3 1431788025 =1
DragCussor | erDrag I A | deer -507.026184082031
DragKind | diDrag { |ty R JES1 N0 dog |-307. 738107420878
DragMode | dmMarussl | o o= doznnd | L Fee |mamsoniza E:
Enabled | (True) e Runtime: (:0:1.11 Threads: 4
FoourCantrg
» Font (TFont)
194.972366333008
Height |20
HelpContex 0
HelpKeywor b
TLabel Caption:TCaption = TiranslateStr | I

M O Typehere to search I:Ir o :.-.___a ‘ 6 B@ @ 0 o f) aﬁ @ 0 ',‘3.(: ~ G 0 o msz! !\

Pic:lazarus maxbox classifierl.jpg

6/8

http://yosinski.com/deepvis

The FormCreate() can also be triggered with this few lines of code:

procedure TFormlFormCreate (Sender: TObject);
var k,t: integer;
items: TStringList;
begin
items:= TStringList.create;
for k:= 0 to 9 do
StringGridl.Cells [0, k+1]:= csl0OLabels[k];

//FindAllFiles (ComboBoxl.Items, 'csdata');
FindFiles (exepath+'data', '*.bmp',items);
writeln (items.text) ;
for t:= 1 to items.count-1 do
ComboBox1l.Items.add (items|[t]) ;
if ComboBoxl.Items.Count > O then begin
ComboBox1.text:= ComboBoxl.Items[0];
if FileExists (ComboBoxl.text) then begin

Imagel.Picture.LoadFromFile (ComboBoxl.text) ;
Image2.Picture.LoadFromFile (ComboBoxl.text) ;

labell.Caption:= extractfilename (ComboBoxl.text) ;

end;
end;
end;

FindFiles (exepath+'data', "*.bmp',items) is an adoption from Lazarus. In
the case that an input image isn't 32x32, you can resize (via copying):

TVolume.CopyResizing (Original: TVolume; NewSizeX,NewSizeY: integer);
And Given that you have a trained NN, you could call this:
TNeuralImageFit.ClassifyImage (pNN:TNNet; pImgInput,pOutput:TNNetVolume) ;

@ maXboxd ScriptStudio 1135_classify_cifari0imagesi_Spas

File Program Options View Debug Output Help

) . | i &

| » Vi -
Load Find Replace | Refact Go Compiel, | Use Cases Tutoral Resource
9 d =4 £ ol P R

{class (}JTForm;

i 11 £ ” -
. Lp‘ \‘_‘/ 11 1135_chassify_cifarlDimagesl_S.pas

24 TForml
5 var
26 Buttonl: TButton:

cout: TLabel;
StringGridil:

(11 BEHS procedure
33 procedure

34 procedure

Pic:1135 classifier box tutorl05.png

~ | Interface List: 1135_dassify_afar10mages1_5.p:

TSR

procedure TForm1Button1Cick{Sender: TObje
procedure TForm1ComboBox1Change(Sender
procedure TFormiFormCreate(Sender: TObje
procedure setClassifierLabels;
procedure SetColumnFulWidth(Gnid: TStringGrid; .
procedure AutoSizeGrdColumns(Grid: TStringGrid]
procedure TForm1Button1Cick(Sender: TObject)
procedure TForm1ComboBox1Change(Sender: T
procedure TForm1FormCreate(Sender: TObject)
procedure loadAIForm;
Locs: 298 - code blocks: 10

7/8

Conclusion:

The neural-api or CAI API (Conscious Artificial Intelligence) is some-
thing like TensorFlow for Pascal and is platform-independent open source
library for artificial intelligence or machine learning in the field of
speech recognition, image classification, OpenCL, big data, data science
and computer visionZ2.

To be able to run this example, you'll need to load an already trained
neural network file and then select the image you intend to classify.
CAI stores both architecture and weights into the same *.nn file!
Dropout is a simple and powerful regularization technique for neural
networks and deep learning models.

Loss functions are different based on a problem statement to which deep
learning is being applied. The cost function is another term used inter-
changeably for the loss function, but it holds a more different meaning.
A loss function is for a single training example, while a cost function
is an average loss over the complete train dataset.

https://github.com/joaopauloschuler/neural-api
https://sourceforge.net/projects/cai/files
https://github.com/maxkleiner/neural-api
Reference:

As a Jupyter Notebook:

https://github.com/maxkleiner/maXbox/blob/master/FKON24 SimplelImageClassificatio
nCPU.ipynb

and the same in colab.research:

https: colab.research.google.com/github/maxkleiner/maXbox/blob/master/EKON24 Si
mpleImageClassificationCPU.ipynb

The whole package with app, script, tutorial, data and model:

https://github.com/maxkleiner/neural -
api/blob/master/examples/SimplelmageClassifier/MachinelearningPackage.zip

Doc and Tool: https://maxbox4.wordpress.com

Script Ref: 1135 classify cifarlOimagesl 5.pas

Max Kleiner 12/02/2023

Digital unterschrieben von

maXbox4exe
m aXbOX4exe Datum: 2023.02.12 20:27:42 8/8

+01'00'

https://github.com/joaopauloschuler/neural-api
https://sourceforge.net/projects/cai/files/
https://github.com/maxkleiner/neural-api
https://colab.research.google.com/github/maxkleiner/maXbox/blob/master/EKON24_SimpleImageClassificationCPU.ipynb
https://colab.research.google.com/github/maxkleiner/maXbox/blob/master/EKON24_SimpleImageClassificationCPU.ipynb
https://github.com/maxkleiner/neural-api/blob/master/examples/SimpleImageClassifier/MachineLearningPackage.zip
https://github.com/maxkleiner/neural-api/blob/master/examples/SimpleImageClassifier/MachineLearningPackage.zip
https://maxbox4.wordpress.com/
https://maxbox4.wordpress.com/
https://maxbox4.wordpress.com/
https://maxbox4.wordpress.com/
https://maxbox4.wordpress.com/
https://maxbox4.wordpress.com/
https://maxbox4.wordpress.com/
https://github.com/maxkleiner/maXbox/blob/master/EKON24_SimpleImageClassificationCPU.ipynb
https://github.com/maxkleiner/maXbox/blob/master/EKON24_SimpleImageClassificationCPU.ipynb

	Drop out experiments
	Conclusion:

		2023-02-12T20:27:42+0100
	maXbox4exe

