s

Trilateration Equation

maXbox Starter 115 - Get Target-point from 4 Sensors.
“Time behaves like space - timeless.

Source: 966 U PointInSpaceb2 mX4Form2 64.pas & PointInSpaceb 64.exe

If you have a code base of 32-bit Windows Delphi applications that you
want to convert to 64-bit Windows, you should first do a reorganisation
of the sources for an overview. Today we deal with an old Borland library
UMatrix.pas and a mathematical problem with of course a solution too.

{- Turbo Pascal Numerical Methods Toolbox -1
{- Copyright (c) 1986, 87 by Borland International, Inc. -}
{- -}
{- This unit provides procedures for dealing with systems of linear -}
{- equations. -1

Given the 3D coordinate locations of four sensors and their known
distance from a target, calculate the location of the target.
Point From 4 Sensors (delphiforfun.orq)

The source is organised in a project-, a form- and a calculation unit:

& PSP Ao iGN R A T G Eio R UMAt B Teewlilan v Fo 8

File Edit Search View Refactor Project Run Component Tools Tabs Help

BB @ OH=vBES BER #7700 0 0) v 1B 6D Hwdevp v r]
Structure £ X U_PointinSpace5 PointinSpace5_64 ‘ R4l PointinSpace5_64.dproj - P... # >
> £ Procedures NYE v 0 BYEBCEBE Y @ v
> [Types Sunit UMatrix; ~ B ProjectGroup1
> 77 Variables/Constants B B R B U 5 < [EF PointinSpaces_64.exe
{ 5 > %4 Build Configurations (Debug)
{ Turbo Pascal Numerical Methods Toolbox .) Target Platf indows 64-bit)
{ Copyright (c) 1986, 87 by Borland International, Inc. -} i Jarget Flatforms (Windows i
{- -} > BB Windows 32-bit
{- This unit provides procedures for dealing with systems of Linear = > BE Windows 64-bit
£ tions. -
ke g equations _; « B3 U_PointinSpace5.pas
Object Inspector 1 % R e e e e b e i e e i b e } [E]U_Pointinspaces.dfm
Form1 TForm1 2
Properties Eveis jol ciinterface Codelnsight: Done
> F C:\maxbox\ipso\USB DISK\EKON24\PointInS...
Action Vv - | type) i
ActveContiol . Float = extended; { 8 byte real, requires 8887 math chip } Pointl... Model .. | Data Ex.. | Multi-D..
Align i alNone s |Eenae Palette 1 X
AlignWithMargins Fal: 20 TNNearlyZero = 1E-87;
ignWithMargins [] False v 2 y. R 0
Quick Edit... Quick Edit Icon... TNArraySize = 30; { Max Size of the matrix } Y > Delphi| Individual Files o
Bind Visually... s 2 > Other | Unit Test
All shown >eonm 11: 44 Insert A7 Delphi ~ ANSI 4 Code History > Delphi | Multi-Device v
Messages ' X
Checking project dependencies... £

Compiling PointinSpace5_64.dproj (Debug, Win64)
Success

Build Output

2 i Qs P OC-_BRd?PePIED -~ vom 000

picl: 115 dradstudio code.png

1/8

http://delphiforfun.org/Programs/Math_Topics/PointFrom4Sensors.htm

So its not always that easy to open your old 32-bit application in the
IDE, add and activate the 64-bit Windows target platform, and compile
your application as a 64-bit target Windows application. We must search
also our old dependencies and check the compatibility with components.

Source Organisation

Unit UMatrix is the unit from the old Borland Turbo Pascal Numeric
Toolbox which contains the Gaussian Elimination procedure used here among
other matrix operations.

So we have sensors at known locations in 3D space. Each sensor can supply
distance information to a target but knows nothing about the target's
direction. Alternatively, the sensors are Satellites and the target is a
GPS receiver which reads very accurate time stamps transmitted by the
satellites and calculates distances based on time offsets between its
clock when a clock time message is received and satellites' clock time
when the message was sent (as contained in the message).

Given the sensor (X, Y, Z) coordinates and their distance-to-target
values, we'll use Gaussian Elimination to solve a set of linear equations
describing the problem and derived as follows:

The distance Di to target at (Xt, Yt, Zt) for sensor "i" located at (Ai,
Bi, Ci) is given by

Sqr (D;) =Sqr (A: - X.) + Sqr(B: - Y.) + Sqgr(C: - -Z.)
after expanding:
D = A® - 2A X, + X7 +By® - 2B;Y. +Y.? +Ci* - 2CiZ. + Z.°

So for the reorganisation of the sources I have the latest revision with
patches as from issues and it goes like this:

begin { procedure Gaussian Elimination }
Initial (Dimen, Coefficients, Constants, Solution, Error);
if Dimen > 1 then begin
UpperTriangular (Dimen, Coefficients, Constants, Error);
if Error = 0 then
BackwardsSub (Dimen, Coefficients, Constants, Solution);
end;
end; {(procedure Gaussian Elimination }

Solving this system of quadratic equations can be tricky, but we can
subtract the Sensorl equation from each of the other 3 to obtain linear
equations like the following example for Sensor2::

2(A1-A) X + 2(Bi-By) Y. + 2(Ci-Cy) 7, = Dzz_Azz_Bzz_sz_Dlz

The resulting 3 equations in 3 unknowns form a system of linear equations
which are solved here using Gaussian Elimination to find the (Xt, Yt, Zt)
target coordinates.

Note that the original problem requires 4 equations to resolve the 3
unknowns (the x, y, and z coordinates of the target). Two sensors can
narrow target location down to a circle (the intersection of 2 spheres
with target distances as radii), the 3rd sensor narrows the location down
to two possible points, (the intersection of the circle with the 3rd

2/8

sensor's sphere circle).

The 4th sensor should resolve which of those two points is the target.

Any error in specified locations or distances would either have no

solution or require that some input values be adjusted.

applied here result in reported distances being adjusted to produce a

The techniques

solution. Differences between input and calculated distances are listed

as part of the solution. Lets have a look at the init routine Initial

which is called in the main by Gaussian Elimination:

procedure Initial (Dimen : integer;

var Coefficients : TNmatrix;

var Constants : TNvector;

var Solution : TNvector;

var Error : byte);
=== }
{- Input: Dimen, Coefficients, Constants -}
{- Output: Solution, Error -}
{= -}
{- This procedure test for errors in the value of Dimen -}
{- This procedure also finds the solution for the -}
{- trivial case Dimen = 1. -}
== }
begin

Error:= 0;
if Dimen < 1 ten
Error:= 1
else
if Dimen = 1 then
if ABS (Coefficients[1l, 1]) <
Error:= 2
else
Solution[1l] := Constants[1]
end; { procedure Initial }

#2 point in space from 4 sensors V5.2 64bit

Introduction Gaussian Elimination Trilateration

We have 4 sensors at known locations in 3D space. Each sensor can
supplydistance information to a target but knows nothing about the target's
direction.

Alternatively, the sensors are Satellites and the target is a GPS receiver
whichreads very accurate time stamps transmitted by the satellites and
calculatesdistances based on time offsets between its clock and satellites’
clocks.

Given the sensor (X,Y,Z) coordinates and their reported distance-to-
targetvalues, we want to determine the target location. The program uses
either oftwo methods to locate the target object; "Gaussian Elimination”
or'Trilateration" which is new with Version 5 of the program. In both
methods, a set of distance equations is solved based finding the single
intersection point of spheres centered on the sensors with radii equal to the
sensor's (or the target's) estimate of the distance to (or from) the target.

Note that, in general, the problem requires 4 equations to narrow solutions
to a sinale point. Two sensors can narrow taraet location down to a circle

TNNearlyZero then

/ Coefficients[1l, 1]

Load, generate, or enter a case and click "Solve" to see the solution

Sensor 1
Sensor 2
Sensor 3

Sensor 4

’

O

X Y: Z: Dist:
1.000 1.000 1.000 6.928
1.000 1.000 2.000 6.403
2.000 1.000 1.000 6.403
3.000 3.000 3.000 3.464
5.000 5.000 5.000 0.000

Generate Simple case 1

Load case

Current Case:

Linear system:

Cosfficients Constants

0.000000 0.000000 —-2.000000, —-9.998775
—-2.000000 0.000000 0.000000, —-9.998775
—4.000000 —4.000000 —4.000000, —-59.997888

Target coordinates (X, ¥, Z)

Calculated: | 4.95939 5.00070 4.99939)

Input ws Calculated Distance from Target

Simple case 1 (unsaved)

Generate random case

Save Case

. Solve Verbose (show more result detail)

| “Gaussian Elimination |

Copyright @ 2008, 2014, 2020-2024 Gary Darby, maXbox5, www DelphiForFun.org

Trilateration

Pic2: 115 GUIDesignandRuntime2(023-12-02143419.png

3/8

The Solve button returns a position which may be at distances different from
those in the original distance equations but do satisfy the distances
relative to Sensor 1. That is part of what we sacrifice by eliminating one
of the equations and converting quadratics to linear. A better solution in
the ”"GPS case might be to incorporate dummy 4th variable representing the
distance error due to clock synchronization errors between the satellites
and the GPS receiver. The multivariate Newton-Raphson algorithm is a
possible way to solve by using 4 quadratic equations in 4 unknowns.

| @ maXbox5 64-bit ScriptStudio maxbox starter115.txt — [m] X

! File Program QOptions View Debug Output Help
e T &, iﬁ'
* Find . Replace Qﬂéf/gct © Go Compile!

i » = & 7 W ® s s = B % o W N s

ioas3 | case MathErr of Interface List: maxbox_starter115.t

H] a6al] 9: begin HK KKK RO KR KK KOO KRR K

| ' & . . . function real3dpoint(a,b,c:extended
= add('Target coordinates (X, Y, Z)'); function Dist3D(p1,p2-TReal3DPoini

| e add("------mm e DH 1 procedure LoadValuesfromEdits;

|B a7 | add(format('Calculated: (%12.5F %12.5F %12.5F)",[Xs[1],Xs[2],Xs[311)); procedure LoadEditsFromValues;

= (* procedure FormCreate(Sender: TOb

! procedure resetresults;

| N If targetknown. checked then procedure setSensorval(N:integer;x

| with target do procedure GentestBtnClick(Sender:
471 add(format('Input: (%12.3f %12.3f %12.3f)',[x,y,2])); procedure RandcaseBtnClick(Sender

| a2 | *) procedure showtarget(show:booleal

. s dure EditCh: Sender: TOb;

473 {check target distances from specified values} g:g:dﬂ:: So;veb::(g:ﬁgk(e;e:drer: Tc
27 t:= real3dpoint(xs[1],xs[2],xs[3]); function GaussSolve(Inputlabel:strir

| L add(''); procedure SaveBtnClick(Sender: TO
75 add('Input vs Calculated Distance from Target'); g:gg:gﬂ:: :ﬁ;FB;PrSICk(SEHdEH TO
i i s procedure StaticText1Click(Sender:

| procedure TargetKnownClick(Sende
maXbox5 C\maxbox\maxbox4\maxbox4\docs\maxbox_starter115.txt Compiled: 02/12/2023 14:27:03 Mem: 72% Row: 467 -—-Col: 1 ¢ MIT:11

debug: 331- 4294967295 err:0
debug: 332- 4294967295 err:0
debug: 333- 4294967295 err:0
debug: 334- 4294967295 err:0

form create on create called...

O OO mX5 executed: 02/12/2023 14:27:04 Runtime: 0:0:3.122 Memload: 72% use
RemObjects Pascal Script. Copyright (c) 2004-2024 by RemObjects Software & maXbox5
|\Ver: 5.0.2.30 (502). Workdir: C:\maxbox\maxbox51

Pic3: 115 Designtime2023-12-02143302.png

In Delphi or maXbox, I can include a folder's source code by adding it to
the project Search Path or define as an include file, or adding it to the
Library Path. The Search Path applies for the UMatrix.pas only to the
current project, while the Library Path applies to any project opened
with the IDE.

Version 5 Test Case

Version 5 posted today adds a second method for locating the target.
Trilateration uses the locations of three sensors to exactly narrow the
target location down to at most two possibilities. See this Wikipedia
article for an excellent discussion and derivation of the Math involved.
I translated a C code implementation to Delphi for testing.
Trilateration - Wikipedia

By solving the 4 combination using 3 of the 4 sensors and saving the two
solutions from each case, it seems that we have good luck in identifying
the single solution. It is much more robust to the Gaussian Elimination
version, easily solving the case submitted by a user which led to the
current investigation: Using notation (x, y, z, r) to represent the x, vy,
z, coordinates and r, the measured distance to the target.

4/8

https://en.wikipedia.org/wiki/Trilateration

A test case is defined by (0,0,0,10), (10,0,0,10), (0,10,0,10), and
(10,10,0,10). Gaussian Elimination finds no solution or an incorrect
solution if a small increment is added to the z coordinate of one of the
sensors to remove the singularity. Trilateration correctly identifies the
solution as (5, 5, 7.07) or (5, 5, -7.07) which is also wvalid:

Solution 1: 5.00 5.00 7.07
Distance to sphere 1 is 10.000 (radius 10.000)
Distance to sphere 2 is 10.000 (radius 10.000)
Distance to sphere 3 is 10.000 (radius 10.000)
Solution 2: 5.00 5.00 -7.07
Distance to sphere 1 is 10.000 (radius 10.000)
Distance to sphere 2 is 10.000 (radius 10.000)
Distance to sphere 3 is 10.000 (radius 10.000)

Solution 1: 5.00 5.00 7.07
Distance to sphere 1 is 10.000 (radius 10.000)
Distance to sphere 2 is 10.000 (radius 10.000)
Distance to sphere 4 is 10.000 (radius 10.000)
Solution 2: 5.00 5.00 -7.07
Distance to sphere 1 is 10.000 (radius 10.000)
Distance to sphere 2 is 10.000 (radius 10.000)
Distance to sphere 4 is 10.000 (radius 10.000)

Solution 1: 5.00 5.00 -7.07
Distance to sphere 1 is 10.000 (radius 10.000)
Distance to sphere 3 is 10.000 (radius 10.000)
Distance to sphere 4 is 10.000 (radius 10.000)
Solution 2: 5.00 5.00 7.07
Distance to sphere 1 is 10.000 (radius 10.000)
Distance to sphere 3 is 10.000 (radius 10.000)
Distance to sphere 4 is 10.000 (radius 10.000)

Solution 1: 5.00 5.00 -7.07
Distance to sphere 2 is 10.000 (radius 10.000)
Distance to sphere 3 is 10.000 (radius 10.000)
Distance to sphere 4 is 10.000 (radius 10.000)
Solution 2: 5.00 5.00 7.07
Distance to sphere 2 is 10.000 (radius 10.000)
Distance to sphere 3 is 10.000 (radius 10.000)
Distance to sphere 4 is 10.000 (radius 10.000)

Sum of coordinate differences:
Solution 1: 28.28427, Solution #2: 28.28427

Use Solution 2 set

Solution 2: 5.00 5.00 =-7.07
Distance to sphere is 10.00000 (vs. measured 10.00000)
Distance to sphere is 10.00000 (vs. measured 10.00000)
Distance to sphere is 10.00000 (vs. measured 10.00000)
Distance to sphere is 10.00000 (vs. measured 10.00000)

DSw N

As you can see in Pic2 there are 19 TEdit controls for user input; 4 for
each of the 4 sensors plus 3 if the user wants to enter target values.
The target values were convenient when debugging the code with sets of
points with known solutions. In order to simplify the code, I defined an
array, Sensors, of TSensorEdits records, each containing 4 TEdit
references (object references are always pointers), plus the numeric
version of the X, Y, Z, and R (distance) values represent by the edits

5/8

for that specific sensor.

Perhaps as suggested we can just define references to avoid an assembler.

Geometrically, each of the 4 sensors and its target distance define a
sphere upon which the target must lie, and that should be the common

point of intersection of all 4 spheres.

@ maXbox5 64-bit ScriptStudio maxbox_starter115.txt

File Program Options View Debug Output Help
EEE ; e @
Replace @R\efg,pt © Go Compile!

TS

s
& o 535,‘3'9&

A

S S DR e (& I L &9 | 11 maxbox_starteri1S.txt v

463 ‘ case MathErr of Interface List: maxbox_starter115.t
4645 9_ be in KK R KK KK K KR K KR KK KKK KKK KRR R KKk
' 8 . . . function real3dpoint(a,b,c:extended
N add('Target coordinates (X, Y, Z)'); function Dist3D(p1,p2: TReal3DPoin
4c8 add('--- oo BH procedure LoadValuesfromEdits;
467 add(format('Calculated: (%12.5f %12.5f %12.5f)',[Xs[1],Xs[2],Xs[3]])); procedure LoadEditsFromValues;
168 * procedure FormCreate(Sender: TOb
procedure resetresults;
‘i If targetknown. checked then procedure setSensorval(N:integer;x
428 with target do procedure GentestBtnClick(Sender:
471 add(format('Input: (%12.3f %12.3f %12.3f)',[x,y,z])); procedure RandcaseBtnClick(Sender
472 *) procedure showtarget(show:booleal
- . dure EditCh: Sender: TOb,
473 {check target distances from specified values} g:gg:d:: So;veb::(g:ﬁék(e;:;er: Tc
A t:= real3dpoint(xs[1],xs[2],xs[3]); function GaussSolve(Inputlabel:strir
475 add('"); procedure SaveBtnClick(Sender: TO |
476 add('Input vs Calculated Distance from Target'); procedure LoadBtnClick(Sender: TO
dd(. procedure loadForm;
‘i add(’---ommromm oo)3 procedure StaticText1Click(Sender:
procedure TargetKnownClick(Sende
maXbox5 C:\maxbox\maxbox4\maxbox4\docs\maxbox_starter115.txt Compiled: 02/12/2023 14:36:26 Mem: 73% Rtime: 0:0:3.375 Thrs: 12 S |

sensor solve load1]

sensor solve load2

Determinant: -16.000000000000
x math error: 0

solution: 5.000697000000
return solve True

debug: 428- 4294967295 err:0
Ver: 5.0.2.30 (502). Workdir: C:\maxbox\maxbox51

Picd4: 115 GUIDesignandRuntime2023-12-02143419.png

@ maXbox5 ScriptStudio: 685_leanfitmath_64.txt - [m] X

File Program Options View Debug Output Help

> 5

S 4
* Firid ugﬁeg{ace / Refact

: &
= DO S 2
45 ~ || Interface List: 685_leanfitmath.txt
46[C] FUNCTION Deter (A: Ary2s): Real;

47 | |{ calculate the determinant of a 3-by—3 matrix } PROCEDURE Get_Data(VAR X, Y: Ary;

48 FUNCTION Deter(A: Ary2s): Real;
& 49| BEGIN { function Deter } PROCEDURE Setup(VAR B: Ary2s;

50 result:= A[1][1] *(A[2][2]1*A[3][3] - A[3][2]*A[2][3] PROCEDURE Solve(A: AryZs;

51 - A[1][2] *(A[2][1]1*A[3]1([3] - A[3]1[1]1*A[Z2]1I[3]) PROCEDURE Linfit(X, Y: Ary;

52 + A[L1][3] *(A[2][1]1*A[3][2] - A[3][1l]1*A[Z]([2] PROCEDURE Write_Data;

53 -|END; { function Deter } Locs: 200 - code blocks: 6

B ss0o PROCEDURE Setup (VAR B: Ary2s;

56 ; . VAR Coef: Arys;
57 i i i i J: Integer; A: Ary2s; Det: Real; Y:Arys;Nrow: integer);
58 | VAR
59 I: Integer;
& 6o // A: Ary2s; Det: Real; //interface from solve

sz?EEGIN { sSetup }
=1

63 FCR I := TO Nrow DO

64 BEGIN

65 BII][J] := ¥[I]; v
< - . - . >

C\Program Files\Streaming\maxbox#\maxbox47650\maxbox4\examples\685_|leanfitmath.txt last in .ini Row: 60 ---Col: 1 Sel: 1'S

Correlation coefficient is 0.991547164796
Press Enter for plot...to continue

Press Enter to end
584942417355.072

584942417355.072

584942417355.072

OO mX5 executed: 28/10/2023 09:56:47 Runtime: 0:0:4.561 Memload: 57% use
RemObjects Pascal Script. Copyright (c) 2004-2024 by RemObjects Software & maXbox5

Pic5: 7 mX5 64bitGUI.png

6/8

This target coordinate technique above
understanding about what each distance
results of. Alternatively, the sensors
GPS receiver which reads very accurate
satellites and calculates distances ba
clock and satellites' clocks. About th

How GPS Receivers Work - Trilateration

used to help with the

represents and what the difference
are Satellites and the target is a
time stamps transmitted by the

sed on time offsets between its

e topic:

vs Triangulation - GIS Geography

Another interesting topic is the Runge
order ordinary differential equations,

-Kutta technique for solving second
like in a pendulum motion.

Pendulums, Simple and otherwsie (delphiforfun.org)
@ maXbox5 64-bit ScriptStudio 840_URungeKuttadtest?_64.pas - m} X
File Program Options View Debug QCutput Help
RS g e Y B e ey = T
i . “Find “iﬁegjace [Refact | Go' - Resource | . Serigld lumaxhaxs -
G 3 £ A y o A ! o £ A S oo S A
5 d e (DI A; W L Oy El‘l 840_URungeKuttadtest?_64.pas v| Y| e
630 at'+ ~ || Interface List: 840_URungeKuttadtest2_64.pas ~
681 : Floattostr(alowerlimit)+ ' "+Floattostr (Initialvalue));
682 add('val ¥''" at '+Fleoattostr(aLowerLimit)+ Function Test2CalBackFunc2
T " . ' {Floattostr(InitialDeriv)); procedure RungeKutta2ndOrderIC(LowerLimit
i H i . o . procedure RungeKutta2ndOrderIC2(LowerLimit
684 add (' Numb f intervals: ' +inttostr(trunc(aUpperlimit/CalcInterval))); procedure RungeKutta2ndOrderIC_System(
685 add(' "); procedure TestiBtnClick(Sender: TObject);
686 add ("’ t Value of X Derivative of X ') procedure Test2BtnClick(Sender: TObject);
687 RungeKuttaZndOrderIC(alowerLimit, aUpperLimit, TInitialvalue, Initialberiv, procedure PendulumBtnCick(Sender: TObje:
688 Returninterval, CalcInterval, aError, Function TESt1CBIIBBCKF“”E(T]XIXP”"”E1d?
689 EPendulumFunc, EPendulumCallBackFunc) ; Function Test2CalBackFunc(v:ATNVector):
R N ; Function PendulumCalBackFunc
698 selstart:=0; sellength:=0; {move back toc top of memo display} Function TFormiTest1CalBackFunc(T,X,XPrimi
Poo1 case aError of Function Test2CalBackFunc(V:ATnVector):bool
692 1 : add('The number of wvalues to return must be greater than zero.'); procedure RungeKutta2ndOrderIC(LowerLimit
693 2 : begin procedure RungeKutta2ndOrderIC2(LowerLimit
694 ! add('The number of intervals must be eater than' E:g::gﬂ;: ;Eenpg(sﬁjtiggﬂdOrc:]eFrllo(?t}System(L
695 + or equal to the number of walues t return.'); procedure TestiBtnClck(Sender: TObject);
L0 | end; o . o procedure Test2BtnClick(Sender: TObject);
&597 3 : add('The lower limit must be different from the upper limit."); Function PendulumFunc(T, X, XPrime:Float):Floa
698 - end; { case } Function PendulumCalBackFune(T, X, XPrime:Flc
699 L end; procedure PendulumBtnClick{Sender: TObject);
700 |end; Function TestiUserFunc2(T,X, XPrime:Float):flc
¥ || Function Test1CalBackFunc(T, X, XPrime:Float):
< > procedure loadForm; v
maXbox5 C:\Program Files\Streaming\maxbox4\docs\64bitreport\840_URungeKuttadtest2_64.pas Compiled: 28/10/2023 10:46:57 Mem: 54% Row: 697 ---Col: 1 Sel: 2(S

64.pas Compiled done: 28/10/2023 10:46:57

OO0 mX5 executed: 28/10/2023 10:46:57 Runtime: 0:0:1.583 Memload: 53% use
RemObjects Pascal Script. Copyright (c) 2004-2024 by RemObjects Software & maXbox5

Ver: 5.0.1.22 (501). Workdir: C:\Program Files\Streaming\maxbox4\maxbox47650\maxbox4

Pic6: 8 mX5 64bitGUI2.png

Conclusion:

Triangulation is process of measuring bearings and calculating distances

(using the Sine Rule).
Trilateration is the process of measur
bearings (using Cosine Rule).

Geometrically,
sphere upon which the target must lie,
point of intersection of all 4 sphere.
64-bit isn’t a magic bullet.

Other than that,

ing distances and calculating

each of the 4 sensors and its target distance define a

and that should be the common

you only need to change if

you’ve already encountered one of the limits imposed by 32-bit or you
want to develop plug-ins for 64-bit app or just be compatible with a 64-

bit operation system.
Script:

softwareschule.ch/examples/maxbox starterll5.txt

7/8

http://www.softwareschule.ch/examples/maxbox_starter115.txt
http://delphiforfun.org/programs/pendulum.htm
https://gisgeography.com/trilateration-triangulation-gps/

References:

Compiled Project:
https://github.com/maxkleiner/maXbox4/releases/download/V4.2.4.80/
maxbox5.zip

Topic:
http://delphiforfun.org/Programs/Math Topics/PointFrom4Sensors.htm

https://gis.stackexchange.com/questions/17344/differences-between-triangulation-
and-trilateration

Preparation:
https://stackoverflow.com/questions/4051603/how-should-i-prepare-my-32-
bit-delphi-programs-for-an-eventual-64-bit-compiler

Doc and Tool: https://maxbox4.wordpress.com

Appendix

Unit UMatrix

Procedure Determinant (Dimen : integer; Data : TNmatrix; wvar Det : Float; var Error : byte)');

Procedure Inverse2(Dimen : integer; Data : TNmatrix; wvar Inv : TNmatrix; var Error : byte)');

Procedure Gaussian Elimination(Dimen:integer;Coefficients:TNmatrix;Constants:TNvector;var Solution:TNvector;var
Error:byte);

Procedure Partial Pivoting(Dimen:integer; Coefficients:TNmatrix;Constants:TNvector; var Solution:TNvector;var
Error:byte);

Procedure LU Decompose (Dimen:integer;Coefficients:TNmatrix;var Decomp:TNmatrix;var Permute:TNmatrix;var
Error:byte);

Procedure LU Solve (Dimen: integer;var Decomp TNmatrix;Constants:TNvector;var Permute:TNmatrix;var
Solution:TNvector;var Error:byte);

Procedure Gauss_Seidel (Dimen : integer; Coefficients : TNmatrix; Constants : TNvector; Tol : Float; MaxIter
integer; wvar Solution : TNvector; var Iter : integer; var Error : byte)');
end;

CL.AddTypeS ('TNvector', 'array[l..30] of Extended');

//TNvector = array[l..TNArraySize] of Float;

CL.AddTypeS ('TNmatrix', 'array[l..30] of TNvector');

//TNmatrix array([l..TNArraySize] of TNvector;

CL.AddConstantN ('TNNearlyZero', 'Extended') .setExtended(1E-07);
CL.AddConstantN ('TNArraySize', 'LongInt').SetInt(30);

CL.AddDelphiFunction ('Procedure Gaussian Elimination(Dimen : integer; Coefficients : TNmatrix; Constants
TNvector; var Solution : TNvector; var Error : byte)');

CL.AddDelphiFunction ('Procedure Partial Pivoting(Dimen : integer; Coefficients : TNmatrix; Constants : TNvector;
var Solution : TNvector; var Error : byte)');

CL.AddDelphiFunction('Procedure LU Decompose(Dimen : integer; Coefficients : TNmatrix; var Decomp : TNmatrix;
var Permute : TNmatrix; var Error : byte)');

CL.AddDelphiFunction ('Procedure LU_Solve2(Dimen : integer; var Decomp : TNmatrix; Constants : TNvector; var
Permute : TNmatrix; var Solution : TNvector; var Error : byte)');

CL.AddDelphiFunction ('Procedure Gauss Seidel(Dimen : integer; Coefficients : TNmatrix; Constants : TNvector; Tol

Float; MaxIter : integer; var Solution : TNvector; var Iter : integer; var Error : byte)');

end;

Solution 1:
Distance to
Distance to
Distance to

Solution 2: 5.00)0 5.
Distance to sphere 1 is
Distance to sphere 2 is
Distance to sphere 3 is

(radius
(radius
(radius

(radius
(radius
(radius

Sum of coordinate differences:
Solution 1: 1.75172, Solution #2: 24.0568

Using Solution 1 set

Solution 1: 5. 5. 00
Distance to sphere
Distance to sphere
Distance to sphere
Distance to sphere

7/}

Max Kleiner 02/12/2023

measured ¢
measured
measured 6.4(
measured

Digitally signed by

m a X bOX4exe g:t)((fg())(gg.);z.OZ 17:06:00

+01'00' 8/8

https://maxbox4.wordpress.com/
https://stackoverflow.com/questions/4051603/how-should-i-prepare-my-32-bit-delphi-programs-for-an-eventual-64-bit-compiler
https://stackoverflow.com/questions/4051603/how-should-i-prepare-my-32-bit-delphi-programs-for-an-eventual-64-bit-compiler
https://gis.stackexchange.com/questions/17344/differences-between-triangulation-and-trilateration
https://gis.stackexchange.com/questions/17344/differences-between-triangulation-and-trilateration
http://delphiforfun.org/Programs/Math_Topics/PointFrom4Sensors.htm
https://github.com/maxkleiner/maXbox4/releases/download/V4.2.4.80/maxbox5.zip
https://github.com/maxkleiner/maXbox4/releases/download/V4.2.4.80/maxbox5.zip

	Source Organisation
	Version 5 Test Case
	Conclusion:
	References:
	Appendix

		2023-12-02T17:06:00+0100
	maXbox4exe

