
//

Trilateration Equation
__

maXbox Starter 115 – Get Target-point from 4 Sensors.

“Time behaves like space – timeless.

Source: 966_U_PointInSpace52_mX4Form2_64.pas & PointInSpace5_64.exe

If you have a code base of 32-bit Windows Delphi applications that you
want to convert to 64-bit Windows, you should first do a reorganisation
of the sources for an overview. Today we deal with an old Borland library
UMatrix.pas and a mathematical problem with of course a solution too.

{--}
{- -}
{- Turbo Pascal Numerical Methods Toolbox -}
{- Copyright (c) 1986, 87 by Borland International, Inc. -}
{- -}
{- This unit provides procedures for dealing with systems of linear -}
{- equations. -}
{- -}
{--}

Given the 3D coordinate locations of four sensors and their known
distance from a target, calculate the location of the target.
Point From 4 Sensors (delphiforfun.org)

The source is organised in a project-, a form- and a calculation unit:

pic1: 115_dradstudio_code.png

 1/8

http://delphiforfun.org/Programs/Math_Topics/PointFrom4Sensors.htm

So its not always that easy to open your old 32-bit application in the
IDE, add and activate the 64-bit Windows target platform, and compile
your application as a 64-bit target Windows application. We must search
also our old dependencies and check the compatibility with components.

Source Organisation
Unit UMatrix is the unit from the old Borland Turbo Pascal Numeric
Toolbox which contains the Gaussian Elimination procedure used here among
other matrix operations.
So we have sensors at known locations in 3D space. Each sensor can supply
distance information to a target but knows nothing about the target's
direction. Alternatively, the sensors are Satellites and the target is a
GPS receiver which reads very accurate time stamps transmitted by the
satellites and calculates distances based on time offsets between its
clock when a clock time message is received and satellites' clock time
when the message was sent (as contained in the message).
Given the sensor (X, Y, Z) coordinates and their distance-to-target
values, we'll use Gaussian Elimination to solve a set of linear equations
describing the problem and derived as follows:

The distance Di to target at (Xt, Yt, Zt) for sensor "i" located at (Ai,
Bi, Ci) is given by

Sqr(Di)=Sqr(Ai - Xt) + Sqr(Bi - Yt) + Sqr(Ci - -Zt)

after expanding:

Di
2 = Ai

2 - 2AiXt + Xt
2 +Bi

2 - 2BiYt +Yt
2 +Ci

2 - 2CiZt + Zt
2

So for the reorganisation of the sources I have the latest revision with
patches as from issues and it goes like this:

begin { procedure Gaussian_Elimination }
 Initial(Dimen, Coefficients, Constants, Solution, Error);
 if Dimen > 1 then begin
 UpperTriangular(Dimen, Coefficients, Constants, Error);
 if Error = 0 then
 BackwardsSub(Dimen, Coefficients, Constants, Solution);
 end;
end; { procedure Gaussian_Elimination }

Solving this system of quadratic equations can be tricky, but we can
subtract the Sensor1 equation from each of the other 3 to obtain linear
equations like the following example for Sensor2::

2(A1-A2)Xt + 2(B1-B2)Yt + 2(C1-C2)Zt = D2
2-A2

2-B2
2-C2

2-D1
2

The resulting 3 equations in 3 unknowns form a system of linear equations
which are solved here using Gaussian Elimination to find the (Xt, Yt, Zt)
target coordinates.
Note that the original problem requires 4 equations to resolve the 3
unknowns (the x, y, and z coordinates of the target). Two sensors can
narrow target location down to a circle (the intersection of 2 spheres
with target distances as radii), the 3rd sensor narrows the location down
to two possible points, (the intersection of the circle with the 3rd

 2/8

sensor's sphere circle).
The 4th sensor should resolve which of those two points is the target.
Any error in specified locations or distances would either have no
solution or require that some input values be adjusted. The techniques
applied here result in reported distances being adjusted to produce a
solution. Differences between input and calculated distances are listed
as part of the solution. Lets have a look at the init routine Initial
which is called in the main by Gaussian Elimination:

procedure Initial(Dimen : integer;
 var Coefficients : TNmatrix;
 var Constants : TNvector;
 var Solution : TNvector;
 var Error : byte);

{--}
{- Input: Dimen, Coefficients, Constants -}
{- Output: Solution, Error -}
{- -}
{- This procedure test for errors in the value of Dimen. -}
{- This procedure also finds the solution for the -}
{- trivial case Dimen = 1. -}
{--}

begin
 Error:= 0;
 if Dimen < 1 ten
 Error:= 1
 else
 if Dimen = 1 then
 if ABS(Coefficients[1, 1]) < TNNearlyZero then
 Error:= 2
 else
 Solution[1]:= Constants[1] / Coefficients[1, 1];
end; { procedure Initial }

Pic2: 115_GUIDesignandRuntime2023-12-02143419.png

 3/8

The Solve button returns a position which may be at distances different from
those in the original distance equations but do satisfy the distances
relative to Sensor 1. That is part of what we sacrifice by eliminating one
of the equations and converting quadratics to linear. A better solution in
the ”GPS case might be to incorporate dummy 4th variable representing the
distance error due to clock synchronization errors between the satellites
and the GPS receiver. The multivariate Newton-Raphson algorithm is a
possible way to solve by using 4 quadratic equations in 4 unknowns.

Pic3: 115_Designtime2023-12-02143302.png

In Delphi or maXbox, I can include a folder's source code by adding it to
the project Search Path or define as an include file, or adding it to the
Library Path. The Search Path applies for the UMatrix.pas only to the
current project, while the Library Path applies to any project opened
with the IDE.

Version 5 Test Case
Version 5 posted today adds a second method for locating the target.
Trilateration uses the locations of three sensors to exactly narrow the
target location down to at most two possibilities. See this Wikipedia
article for an excellent discussion and derivation of the Math involved.
I translated a C code implementation to Delphi for testing.
Trilateration - Wikipedia

By solving the 4 combination using 3 of the 4 sensors and saving the two
solutions from each case, it seems that we have good luck in identifying
the single solution. It is much more robust to the Gaussian Elimination
version, easily solving the case submitted by a user which led to the
current investigation: Using notation (x, y, z, r) to represent the x, y,
z, coordinates and r, the measured distance to the target.

 4/8

https://en.wikipedia.org/wiki/Trilateration

A test case is defined by (0,0,0,10), (10,0,0,10), (0,10,0,10), and
(10,10,0,10). Gaussian Elimination finds no solution or an incorrect
solution if a small increment is added to the z coordinate of one of the
sensors to remove the singularity. Trilateration correctly identifies the
solution as (5, 5, 7.07) or (5, 5, -7.07) which is also valid:

Solution 1: 5.00 5.00 7.07
 Distance to sphere 1 is 10.000 (radius 10.000)
 Distance to sphere 2 is 10.000 (radius 10.000)
 Distance to sphere 3 is 10.000 (radius 10.000)
Solution 2: 5.00 5.00 -7.07
 Distance to sphere 1 is 10.000 (radius 10.000)
 Distance to sphere 2 is 10.000 (radius 10.000)
 Distance to sphere 3 is 10.000 (radius 10.000)

Solution 1: 5.00 5.00 7.07
 Distance to sphere 1 is 10.000 (radius 10.000)
 Distance to sphere 2 is 10.000 (radius 10.000)
 Distance to sphere 4 is 10.000 (radius 10.000)
Solution 2: 5.00 5.00 -7.07
 Distance to sphere 1 is 10.000 (radius 10.000)
 Distance to sphere 2 is 10.000 (radius 10.000)
 Distance to sphere 4 is 10.000 (radius 10.000)

Solution 1: 5.00 5.00 -7.07
 Distance to sphere 1 is 10.000 (radius 10.000)
 Distance to sphere 3 is 10.000 (radius 10.000)
 Distance to sphere 4 is 10.000 (radius 10.000)
Solution 2: 5.00 5.00 7.07
 Distance to sphere 1 is 10.000 (radius 10.000)
 Distance to sphere 3 is 10.000 (radius 10.000)
 Distance to sphere 4 is 10.000 (radius 10.000)

Solution 1: 5.00 5.00 -7.07
 Distance to sphere 2 is 10.000 (radius 10.000)
 Distance to sphere 3 is 10.000 (radius 10.000)
 Distance to sphere 4 is 10.000 (radius 10.000)
Solution 2: 5.00 5.00 7.07
 Distance to sphere 2 is 10.000 (radius 10.000)
 Distance to sphere 3 is 10.000 (radius 10.000)
 Distance to sphere 4 is 10.000 (radius 10.000)

Sum of coordinate differences:
 Solution 1: 28.28427, Solution #2: 28.28427
Use Solution 2 set
Solution 2: 5.00 5.00 -7.07
 Distance to sphere 1 is 10.00000 (vs. measured 10.00000)
 Distance to sphere 2 is 10.00000 (vs. measured 10.00000)
 Distance to sphere 3 is 10.00000 (vs. measured 10.00000)
 Distance to sphere 4 is 10.00000 (vs. measured 10.00000)

As you can see in Pic2 there are 19 TEdit controls for user input; 4 for
each of the 4 sensors plus 3 if the user wants to enter target values.
The target values were convenient when debugging the code with sets of
points with known solutions. In order to simplify the code, I defined an
array, Sensors, of TSensorEdits records, each containing 4 TEdit
references (object references are always pointers), plus the numeric
version of the X, Y, Z, and R (distance) values represent by the edits

 5/8

for that specific sensor.
Perhaps as suggested we can just define references to avoid an assembler.
Geometrically, each of the 4 sensors and its target distance define a
sphere upon which the target must lie, and that should be the common
point of intersection of all 4 spheres.

Pic4: 115_GUIDesignandRuntime2023-12-02143419.png

Pic5: 7_mX5_64bitGUI.png

 6/8

This target coordinate technique above used to help with the
understanding about what each distance represents and what the difference
results of. Alternatively, the sensors are Satellites and the target is a
GPS receiver which reads very accurate time stamps transmitted by the
satellites and calculates distances based on time offsets between its
clock and satellites' clocks. About the topic:

How GPS Receivers Work - Trilateration vs Triangulation - GIS Geography

Another interesting topic is the Runge-Kutta technique for solving second
order ordinary differential equations, like in a pendulum motion.

Pendulums, Simple and otherwsie (delphiforfun.org)

Pic6: 8_mX5_64bitGUI2.png

Conclusion:
Triangulation is process of measuring bearings and calculating distances
(using the Sine Rule).
Trilateration is the process of measuring distances and calculating
bearings (using Cosine Rule).
Geometrically, each of the 4 sensors and its target distance define a
sphere upon which the target must lie, and that should be the common
point of intersection of all 4 sphere.
64-bit isn’t a magic bullet. Other than that, you only need to change if
you’ve already encountered one of the limits imposed by 32-bit or you
want to develop plug-ins for 64-bit app or just be compatible with a 64-
bit operation system.
Script: softwareschule.ch/examples/maxbox_starter115.txt

 7/8

http://www.softwareschule.ch/examples/maxbox_starter115.txt
http://delphiforfun.org/programs/pendulum.htm
https://gisgeography.com/trilateration-triangulation-gps/

References:
Compiled Project:
https://github.com/maxkleiner/maXbox4/releases/download/V4.2.4.80/
maxbox5.zip

Topic:
http : //delphiforfun.org/Programs/Math_Topics/PointFrom4Sensors.htm
https : //gis.stackexchange.com/questions/17344/differences-between-triangulation-
and-trilateration

Preparation:
https://stackoverflow.com/questions/4051603/how-should-i-prepare-my-32-
bit-delphi-programs-for-an-eventual-64-bit-compiler

Doc and Tool: https :// maxbox4 . wordpress . com

Appendix
Unit UMatrix
Procedure Determinant(Dimen : integer; Data : TNmatrix; var Det : Float; var Error : byte)');
Procedure Inverse2(Dimen : integer; Data : TNmatrix; var Inv : TNmatrix; var Error : byte)');
 Procedure Gaussian_Elimination(Dimen:integer;Coefficients:TNmatrix;Constants:TNvector;var Solution:TNvector;var
Error:byte);
 Procedure Partial_Pivoting(Dimen:integer; Coefficients:TNmatrix;Constants:TNvector; var Solution:TNvector;var
Error:byte);
 Procedure LU_Decompose(Dimen:integer;Coefficients:TNmatrix;var Decomp:TNmatrix;var Permute:TNmatrix;var
Error:byte);
 Procedure LU_Solve(Dimen: integer;var Decomp TNmatrix;Constants:TNvector;var Permute:TNmatrix;var
Solution:TNvector;var Error:byte);
 Procedure Gauss_Seidel(Dimen : integer; Coefficients : TNmatrix; Constants : TNvector; Tol : Float; MaxIter :
integer; var Solution : TNvector; var Iter : integer; var Error : byte)');
end;

 CL.AddTypeS('TNvector', 'array[1..30] of Extended');
 //TNvector = array[1..TNArraySize] of Float;
 CL.AddTypeS('TNmatrix', 'array[1..30] of TNvector');
 //TNmatrix = array[1..TNArraySize] of TNvector;

 CL.AddConstantN('TNNearlyZero','Extended').setExtended(1E-07);
 CL.AddConstantN('TNArraySize','LongInt').SetInt(30);
 CL.AddDelphiFunction('Procedure Gaussian_Elimination(Dimen : integer; Coefficients : TNmatrix; Constants :
TNvector; var Solution : TNvector; var Error : byte)');
 CL.AddDelphiFunction('Procedure Partial_Pivoting(Dimen : integer; Coefficients : TNmatrix; Constants : TNvector;
var Solution : TNvector; var Error : byte)');
 CL.AddDelphiFunction('Procedure LU_Decompose(Dimen : integer; Coefficients : TNmatrix; var Decomp : TNmatrix;
var Permute : TNmatrix; var Error : byte)');
 CL.AddDelphiFunction('Procedure LU_Solve2(Dimen : integer; var Decomp : TNmatrix; Constants : TNvector; var
Permute : TNmatrix; var Solution : TNvector; var Error : byte)');
 CL.AddDelphiFunction('Procedure Gauss_Seidel(Dimen : integer; Coefficients : TNmatrix; Constants : TNvector; Tol
: Float; MaxIter : integer; var Solution : TNvector; var Iter : integer; var Error : byte)');
end;

Solution 1: 5.00 5.00 5.00
 Distance to sphere 1 is 6.928 (radius 6.928)
 Distance to sphere 2 is 6.403 (radius 6.403)
 Distance to sphere 3 is 6.403 (radius 6.403)
Solution 2: 5.00 -3.00 5.00
 Distance to sphere 1 is 6.928 (radius 6.928)
 Distance to sphere 2 is 6.403 (radius 6.403)
 Distance to sphere 3 is 6.403 (radius 6.403)

Sum of coordinate differences:
 Solution 1: 1.75172, Solution #2: 24.05681
Using Solution 1 set
Solution 1: 5.00 5.00 5.00
 Distance to sphere 1 is 6.92800 (vs. measured 6.92800)
 Distance to sphere 2 is 6.40300 (vs. measured 6.40300)
 Distance to sphere 3 is 6.40300 (vs. measured 6.40300)
 Distance to sphere 4 is 3.46390 (vs. measured 3.46400)
//}

Max Kleiner 02/12/2023

 8/8

https://maxbox4.wordpress.com/
https://stackoverflow.com/questions/4051603/how-should-i-prepare-my-32-bit-delphi-programs-for-an-eventual-64-bit-compiler
https://stackoverflow.com/questions/4051603/how-should-i-prepare-my-32-bit-delphi-programs-for-an-eventual-64-bit-compiler
https://gis.stackexchange.com/questions/17344/differences-between-triangulation-and-trilateration
https://gis.stackexchange.com/questions/17344/differences-between-triangulation-and-trilateration
http://delphiforfun.org/Programs/Math_Topics/PointFrom4Sensors.htm
https://github.com/maxkleiner/maXbox4/releases/download/V4.2.4.80/maxbox5.zip
https://github.com/maxkleiner/maXbox4/releases/download/V4.2.4.80/maxbox5.zip

	Source Organisation
	Version 5 Test Case
	Conclusion:
	References:
	Appendix

		2023-12-02T17:06:00+0100
	maXbox4exe

