
//

Multicode II 🐞
__

maXbox Starter 119 – Get a different step Solution.

“Code behaves like recording – recoding from brain to tool.

Source: 393_QRCode5_64TXT_211_7_tutor119_2.TXT

Sometimes life is like playing with us: You write some code that solves a
problem, and then someone comes along and makes the problem harder.
Here's how to continuously integrate new solutions without having to
rewrite your old solutions (as much).
Let's start with a simple problem: You've written and testing a class
that returns a QR-Code from a text line:

 aQRCode:= TDelphiZXingQRCode.Create;
 QRCodBmp:= TBitmap.Create;
 form1:= getform2(700,500,123,'QR Draw PaintPerformPlatform PPP5');
 try
 aQRCode.Data:= aTextline;
 aQRCode.Encoding:= qrcAuto; //TQRCodeEncoding(cmbEncoding.ItemIndex);

That class is currently used by a single application in a scripting
environment. Inside the class you might have Delphi.VCL or ADO.NET code
or LINQ/Entity Framework code, but either way, you're accessing an
internal component on your operating system on your desktops hard-disk.
Then you realize that, because your component data/algorithm doesn't
change very often, as long as you don’t update or rebuild your component,
so your are not up to date with newer features like encoding or error
correcting level.
This leads to a second solution of an external service call like Google
Chart Tools. Using the Google Chart Tools / Image Charts (aka Chart API)
you can easily generate QR-codes, this kind of images are a special type
of two-dimensional barcodes. They are also known as hard-links or
physical world hyperlinks.
The Google Chart Tools also let you generate QR-code images using an HTTP
POST or short messages. All do you need to generate a Qr-Code is make a
get request to this URI:

http://chart.apis.google.com/chart?chs=200x200&cht=qr&chld=M&chl=Text

So we parametrize this URI1 for a get request call:

Const
 URLGoogleQRCODE='https://chart.apis.google.com/chart?chs=%dx%d&cht=qr&chld=
%s&chl=%s';

The API requires 3 simple fields be posted to it:
cht=qr this tells Google to create a QR code;
chld=M the error correction level of the QR code (more later);
chs=wxh the width and height of the image to return (e.g. chs=250x250);
chl=text the URL encoded text to be inserted into the qr-code.

1 Uniform Resource Identifier

 1/10

As the URL is https with a certificate, an application can identify
himself and authenticate himself to any organization trusting the third
party.
The second thing to consider is that (I assume) if the web service object
is working right we can compare the resulting picture with the first
solution. So lets make the call with WinInet Win-API:

procedure GetQrCodeInet(Width,Height:Word; C_Level,apath:string;
 const Data:string);
var encodURL: string;
 pngStream: TMemoryStream;
begin
 encodURL:= Format(URLGoogleQRCODE,[Width,Height, C_Level, HTTPEncode(Data)]);
 pngStream:= TMemoryStream.create;
 HttpGet(encodURL, pngStream); //WinInet
 try
 pngStream.Position:= 0;
 pngStream.savetofile(apath);
 sleep(500);
 OpenDoc(apath);
 finally
 //Dispose;
 pngStream.Free;
 end;
end;

And the call with wininet:

 GetQrCodeInet(150,150,'Q',ExePath+'examples\'+AFILENAME,QData);
 sleep(500);
 writeln('SHA1 '+sha1(ExePath+AFILENAME)); //}
 //SHA1 FE526D46BA48DFD820276872C969473A7B7DE91C

You should be able to see the content of the file with OpenDoc(apath);
and we pass AFILENAME= 'mX5QRCode5.png';

So what's the meaning of the SHA1 hash? For this we compare with a third
solution of internet-call with the Indy10 framework. In comparison with
Wininet as the internal WinAPI library, Indy is an external library also
based on OpenSSL and we compare the result to get the same hash:

procedure GetQrCodeIndy(Width,Height: Word; C_Level,apath: string;
 const Data: string);
var encodURL: string;
 idhttp: TIdHttp;// THTTPSend;
 pngStream: TMemoryStream;
begin
 encodURL:= Format(URLGoogleQRCODE,[Width,Height,C_Level, HTTPEncode(Data)]);
 idHTTP:= TIdHTTP.Create(NIL)
 pngStream:= TMemoryStream.create;
 idHTTP.Get1(encodURL, pngStream)
 //Exception: if not Dll-Could not load SSL library. at 827.447

 2/10

 try
 pngStream.Position:= 0;
 writeln(itoa(pngStream.size));
 pngStream.savetofile(apath);
 sleep(500);
 OpenDoc(apath);
 finally
 idHTTP.Free
 idHTTP:= Nil;
 pngStream.Free;
 end;
end;

As I said we need two DLLs to support the OpenSSL lib; provided OpenSSL
is installed in your system. The call arguments are the same so we get
the same hash back:

 GetQrCodeIndy(150,150,'Q',ExePath+'examples\'+AFILENAME,QData);
 sleep(500);
 writeln('SHA1 '+sha1(ExePath+AFILENAME)); //}

intern: FE526D46BA48DFD820276872C969473A7B7DE91C
SHA1 FE526D46BA48DFD820276872C969473A7B7DE91C

openssl pkcs12 -info -in filename.p12

In cryptography, PKCS #12 defines an archive file format for storing many
cryptography objects as a single file. It is commonly used to bundle a
private key with its X.509 certificate or to bundle all the members of a
chain of trust.

pic1: tutor119_signobjectscreen_6.png

You can either sign files out of a working directory, or you can place
them in your Windows SDK\bin folder.

Source Organisation for Multicode
This separation of now three solutions is reflected in a number of ways.
The most important distinction is that the code schema for developers in
the script division has now 3 folding sections and can be different from
a current configuration design:

 3/10

1. Solution 1 with the internal class needs no https and component.
2. Solution 2 is dependent from external Google API and based on internal
 OS WinInet.
3. Solution 3 is also dependent on Google but has its own internet
 suite as Indy 10 but dependent on OpenSSL.

This we should consider and document in our source code repository:

pic2: tutor119_catrepo.png

The interesting point is to know where the code is running and how it is
stored in the executable or script itself. Embedding Wininet as one
function is nice: HttpGet(encodURL, pngStream); //WinInet
, but you don’t have the flexibility to change for example request- or
response-headers of the external web service you consume, so we test a
forth solution in detail also to debug with more verbosity:

/4. Internal Class mXLib5 -GoogleAPI
procedure GetQrCodeWininetClass(Wid,Hei:Word; C_Level,apath:string;
 const Data:string);
var httpR: THttpConnectionWinInet;
 ms: TMemoryStream;
 heads: TStrings; iht:IHttpConnection;
begin
 httpr:= THttpConnectionWinInet.Create(true);
 ms:= TMemoryStream.create;
 try
 //iht:= httpRq.setHeaders(heads);
 httpR.Get(Format(URLGoogleQRCODE,[Wid,Hei,C_Level,HTTPEncode(Data)]),ms);
 //httpRq.setRequestheader('x-key',aAPIkey);
 if httpr.getresponsecode=200 Then begin
 ms.Position:= 0;
 ms.savetofile(apath);
 sleep(500);
 OpenDoc(apath)
 end Else writeln('Failed responsecode:'+
 itoa(HttpR.getresponsecode));
 except
 //writeln('Error: '+HttpRq.GetResponseHeader(''));

 4/10

 writeln('EHTTP: '+ExceptiontoString(exceptiontype, exceptionparam));
 finally
 httpr:= Nil;
 ms.Free;
 end;
end;

This is the good old Wininet API but this time as an object oriented
class with methods and attributes, for example to check the response code
of the get request. Also in this mapped import library we get the same
hash: intern: FE526D46BA48DFD820276872C969473A7B7DE91C

My goal in refactoring or recoding is to supply "enough engineering" to
support the current problem without over-engineering a solution to some
later problem that might never exist. Said it another way: A solution is
never more complicated than the problem it's solving. But you know it can
be the other way round for example in cryptography: Simple problem but
complex solution.
The fifth solution is tricky and only in an interpreted script possible,
we call the second solution pre-compiled as one function.

5 Solutions Overview

• Internal QR-Component Class mXLib5 TDelphiZXingQRCode

• External call of script with procedure WinInet & Google API

• External call of script with Indy class & Google API

• Internal call of THttpConnectionWinInet class of external API

• Internal call direct in script (precompiled):
 GetQrCode5(150,150,'Q',QDATA, ExePath+AFILENAME);

The Mystery of solution 6 and 7
To be really independent from internal calls and run just on runtime a
late binding solution can be considered.
Early (or static) binding refers to compile time binding as before and
late (or dynamic) binding refers to runtime binding (for example when you
use reflection or retyping).
Late binding uses CreateObject to create and instance of the application
object, which you can then control. For example, to create a new instance
of WinHttp.WinHttpRequest.5.1 using late binding in our sixth solution:

function QRCcodeOle(Wid,Hei:Word; C_Level,apath:string;
 const Data:string): string;
var httpReq,hr: Olevariant; instream: IStream;
 jo: TJSON; strm :TMemoryStream;
begin
 httpReq:= CreateOleObject('WinHttp.WinHttpRequest.5.1');
 //jo:= TJSON.Create();
 hr:= httpReq.Open('GET', format(URLGoogleQRCODE,
 [Wid,Hei,C_Level,HTTPEncode(Data)]))
 httpReq.setRequestheader('content-type','application/octet-stream');
 //httpReq.setRequestheader('Authorization','Bearer '+ CHATGPT_APIKEY2);
 if hr= S_OK then
 HttpReq.Send();
 strm:= TMemoryStream.create;

 5/10

 If HttpReq.Status = 200 Then begin
 try
 //
 strm:= getmemStreamfromIStream2(HttpReq.responsestream);
 //getmemStreamfromIStream2file(hrstream, apath);
 writeln('responsestream size: '+itoa(strm.size));
 strm.savetoFile(apath)
 openFile(apath);
 except
 writeln('EHTTPex: '+ExceptiontoString(exceptiontype, exceptionparam));
 finally
 strm.free;
 httpreq:= unassigned;
 end;
 end;
end;

This solution is the load of an IStream from an OLE response stream as
unknown variant type to a well known TMemoryStream in order to save the
response stream to a file (in our example the binary QR-code image file
as a *.png graphic).

Pic3: tutor119_regex_multicod.png

The crux is the getmemStreamfromIStream2 function. I was probably not
aware of TOleStream at the time I wrote this answer. Looking at
TOleStream now, I notice that it does not support 64-bit streams. This
code does. Other than that, this code is almost identical to the code

 6/10

that TOleStream uses, with one only exception being that this code’s
implementation of the Size property getter is more optimized than
TOleStream‘s implementation is, and this code implements the size
property setter whereas TOleStream does not. So we can combine the invoke
call from HttpReq.responsestream to get a file in one function:

function getmemStreamfromIStream2File(avariant: variant;
 apath: string): Tmemorystream;
 var instream: IStream; ostream: TStream;
 begin
 instream:= IUnknown(avariant) as IStream;
 ostream:= TOleStream.Create(instream);
 result:= Tmemorystream.Create;
 try
 result.CopyFrom(OStream, OStream.Size);
 result.SaveToFile(apath)
 finally
 OStream.Free;
 end;
 end;

And the last one catches everything from external even the language, its
a Python for Delphi Solution:

procedure PYdigitQRCode;
begin
 with TPythonEngine.Create(Nil) do begin
 pythonhome:= 'C:\Users\user\AppData\Local\Programs\Python\Python312\';
 UseWindowsConsole:= false;
 OnPathInitialization:= @TPathInitialization;
 try
 loadDLL;
 //opendll(PYDLL64)
 execstr('import sys, os, json, qrcode');
 println(EvalStr('sys.version'));
 println(EvalStr('sys.executable'));
 execstr('qr =
 qrcode.QRCode(error_correction=qrcode.constants.ERROR_CORRECT_Q)');
 execstr('qrcode.make("'+QDATA+'").save(".\examples\'+AFILENAME+'")');
 ///}
 except
 raiseError;
 finally
 unloaddll;
 free;
 end;
 end;
end;

3.12.1 (tags/v3.12.1:2305ca5, Dec 7 2023, 22:03:25) [MSC v.1937 64 bit (AMD64)]
As a standard install uses pypng to generate PNG files and can also
render QR codes directly to the console. A standard install is just:
pip install qrcode;

Just for the record, found another solution 8th as solution eight with an
Aduino Board to send the text and get an bitmap back (in this context
below only as a serial monitor graph):

const char* QDATA= "https://maxbox4.wordpress.com/";

 7/10

void setup() {
Serial.begin(115200);
// Start time
uint32_t dt = millis();

// Create the QR code
QRCode qrcode;
uint8_t qrcodeData[qrcode_getBufferSize(3)];
qrcode_initText(&qrcode, qrcodeData, 3, 0, QDATA);

// Delta time
dt = millis() - dt;
Serial.print("QR Code Generation Time: ");
Serial.print(dt);
Serial.print("\n");

// Top quiet zone
Serial.print("\n\n\n\n");

for (uint8_t y = 0; y < qrcode.size; y++) {
// Left quiet zone
Serial.print(" ");
// Each horizontal module
for (uint8_t x = 0; x < qrcode.size; x++) {

// Print each module (UTF-8 \u2588 is a solid block)
Serial.print(qrcode_getModule(&qrcode, x, y) ? "\u2588\u2588":" ");
}
Serial.print("\n");
}
// Bottom quiet zone
Serial.print("\n\n\n\n");
}

void loop() {
}

 8/10

Output to Serial Monitor with each module (UTF-8 \u2588 is a solid block)!

 9/10

Conclusion
When it comes to problem-solving, there are often multiple solutions that
can be used to solve the same problem. The choice of solution depends on
various factors such as performance, storage, correctness, implement-
ation, simplicity, and also scaleability and security.
The Google Chart Tools (Chart API) also let you generate QR-code images
using an HTTP POST call.
A Quick Response code is a two-dimensional pictographic code used for its
fast readability and comparatively large storage capacity.
Early binding refers to assignment of values to variables during design
time whereas late binding refers to assignment of values to variables
during run time as a concept of multicode programming.
Implemented often using [special] dynamic types, introspection
/reflection, flags and compiler options, or through virtual methods by
borrowing and extending dynamic dispatching.

Script: softwareschule.ch/examples/qrcode8.txt
 softwareschule.ch/examples/qrcode8.htm

References:
Compiled Project:

https://github.com/maxkleiner/maXbox4/releases/download/
V4.2.4.80/maxbox5.zip

Free Automated Malware Analysis Service - powered by Falcon Sandbox
(hybrid-analysis.com)

Topic:

https://stackoverflow.com/questions/4938601/getting-an-istream-from-an-
olevariant

Preparation:

The Mystery of IStream – Code Blog

Doc and Tool: https :// maxbox4 . wordpress . com

Max Kleiner 23/02/2024

 10/10

http://www.softwareschule.ch/examples/qrcode8.txt
https://maxbox4.wordpress.com/
https://softwareschule.code.blog/2023/12/11/the-mystery-of-istream/
https://stackoverflow.com/questions/4938601/getting-an-istream-from-an-olevariant
https://stackoverflow.com/questions/4938601/getting-an-istream-from-an-olevariant
https://www.hybrid-analysis.com/sample/da34199785ae5371e2cf8a23a12b68295f7c968ba0c8a24f367baf0c5f091439
https://www.hybrid-analysis.com/sample/da34199785ae5371e2cf8a23a12b68295f7c968ba0c8a24f367baf0c5f091439
https://github.com/maxkleiner/maXbox4/releases/download/V4.2.4.80/maxbox5.zip
https://github.com/maxkleiner/maXbox4/releases/download/V4.2.4.80/maxbox5.zip
http://www.softwareschule.ch/examples/qrcode8.htm

	Source Organisation for Multicode
	5 Solutions Overview

	The Mystery of solution 6 and 7
	Conclusion
	References:

		2024-01-26T14:48:52+0100
	maXbox4exe

