

maXbox Starter 28
Start with DLL

1.1 A Library for All
The purpose of writing programs is communication. And communication needs structure. A DLL
can help to structure the system.
A DLL is not XML or UML those L stands for language. A DLL is a library, short for Dynamic Link
Library, a library of executable functions or data that can be used by a Windows or Linux1
application. Typically, a DLL provides one or more particular functions and a program accesses
the functions by creating either a static or dynamic link to the DLL.
A static link remains constant during program execution while a dynamic link is created by the
program as needed. DLLs can also contain just data. DLL files usually end with the extension
*.dll, *.exe, drv, or *.fon.
This is how we declare a function we want to use from a DLL:

Function OpenProcess2(dwDesiredAccess: DWORD; bInheritHandl e: BOOL;

 dwProcessId:DWORD): THandle;

 External 'OpenProcess@kernel32.dll stdcall' ;

Suppose you want to use the function OpenProcess of the ‘kernel32.dll’ .
All you have to do is to declare above statement and you get access to the kernel!
With external you made these functions available to callers external to the DLL, so we must
export them or at least say the function we use is from External. This means also to use the
modifier stdcall because this is a C convention.
The function name OpenProcess2 is different from the original name OpenProcess ! This is an
alias to prevent name conflicts or name it you like because you do have conventions you are free
to rename the function in your script.
That’s all for the meantime, now you can call the function:

ProcessHandle:= OpenProcess2(PROCESS_QUERY_INFORMAT ION or

 PROCESS_VM_READ, false, ProcessID);

And you get back the process handle like: > 904

Writeln('Process Handle: ' +intToStr(ProcessHandle));

A DLL can be used by several applications at the same time. Some DLLs are provided with the
Windows operating system and available for any Win application. Other DLLs are written for a
particular application and are loaded within the application.

1 In Linux we say .so for shared objects

2

Oh wait a minute, you can’t call the function because there is one parameter missing:

ProcessHandle:= OpenProcess2(PROCESS_QUERY_INFORMAT ION or

 PROCESS_VM_READ, false, ProcessID);

The first is set of constants already declared, the second is just false but by the third you need the
ProcessID to get the corresponding handle, that’s life.
So you get the current ProcessId by simply call the function GetCurrentProcessID .

ProcessHandle:= OpenProcess2(PROCESS_QUERY_INFORMAT ION or

 PROCESS_VM_READ, false, GetCurrentProcessID);

The const PROCESS_QUERY_INFORMATION retrieves certain information about a process, such as
its token, exit code, and priority class and the other const PROCESS_VM_READ is required to read
memory in a process using. By the way the script you get all this is:

http://www.softwareschule.ch/examples/440_DLL_Tutor2.txt

With our DLL that just copied and pasted from the script folder, we will use a next example to
retrieve version information. Until this call here some more topics.

���� Windows DLLs usually have no safety whatsoever. The DLLs that interface with HW are
kernel mode drivers that can wreak havoc and gone. Extreme care has to be used when
passing parameters to the DLLs.

Usually you have an interface module that establishes “mapping” between DLL and Pascal
functions so there should be a tested environment in your box.

The advantage of a DLL is:
For most applications, packages in an object oriented sense provide greater flexibility and are
easier to create than DLLs. However, there are several situations where DLLs would be better
suited to your projects than packages:

• Your code module will be called from non-Pascal application.
• You are extending the functionality of a Web server.
• You are creating a code module to be used by third-party developers.
• Your project is an OLE container.

I don’t explain those points just for your insights. Let me say a few words about building a DLL
which is not theme of this tutorial. When we update a DLL (change function's implementation), we
simply compile it, export some new routines and ship the new version. All the applications using
this DLL will still work (unless, of course, you've removed or ruined existing exported routines).

This solution does not support static binding. From a C or C++ application, static binding is
achieved by linking import records (either import libraries or entries in the IMPORTS section of
the application's Module Definition File) to the calling application. Using standard Delphi, static
binding is achieved using a declaration such as:

function xFoobox (param: Integer): Integer; stdcall; external

 'mytools.dll’ name 'Foobox' ;

Therefore we use in maXbox also static binding but in the runtime loading of the script engine.
You can use either c++ or Structured Exception Handling in the DLL. For best results, exceptions
should be caught within the scope of the DLL throwing the exception. If the calling application is
built with Borland c++, Delphi or MS c++, the exception can be caught in the application calling
the DLL. However, VB does not seem to have an exception handling syntax.

3

O.k. enough of technical grabbing let’s chose the second function called
GetProcessMemoryInfo() to glue it with the first function, hope you remember,
OpenProcess() together. In the end we put those 2 DLL functions in our script function!
This as an overview:
We started with OpenProcess from kernel32.dll
Function OpenProcess2(dwDesiredAccess:DWORD; bInher itHandle:BOOL;
dwProcessId: DWORD):THandle; External 'OpenProcess@ kernel32.dll stdcall';

Now we go on with GetProcessMemoryInfo from psapi.dll

function GetProcessMemoryInfo(Process: THandle; var MemoryC ounters:

 TProcessMemoryCounters;

 cb: DWORD): BOO L; //stdcall; ;

 External 'GetProcessMemoryInfo@psapi.dll stdcall' ;

Interesting point is the function which we use came from another DLL called psapi.dll .
It’s on of my favour DLL it’s so small you can count the functions inside. (See picture below)
You find a DLL Spy of the app in menu

../Options/Add Ons/DLL Spy……

With this tool you can open a 32-bit DLL and explore which functions are inside.

To determine the efficiency of your application, you may want to examine its memory usage. The
following sample code uses the GetProcessMemoryInfo function to obtain information about the
memory usage of a process.
You find a lot of discussion concerning this function. Seeing strange results when using
GetProcessMemoryInfo (). The same application ran on different machines, reports different
memory usage. On both machines the process starts with WorkingSetSize of 10.2 MB.
However, on one of the machines the number quickly drops down to 1 MB, while on the other it
stays close to where it started. If I measure the memory consumed in the end, I see that on the
first machine I've used close to 700 KB from the time the memory dropped; on the second
machine it's only 41 KB more or less.

Answer: It is reliable, but you have to very careful when interpreting the results.

4

����The memory dynamics of a process is subject to lots of variables. A quick rundown might be:

• how much physical memory is there
• how much context switching is going on
• how many processes are running
• are there processes that need a lot of memory
• Does your process running in the foreground or not…...

����I mentioned earlier that a DLL is wrapped by a unit so here is the look behind the function
GetProcessMemoryInfo() :

unit PsAPI ;

interface

{$WEAKPACKAGEUNIT}

uses Windows ;

function EnumDeviceDrivers (lpImageBase : PPointer ; cb : DWORD;

 var lpcbNeeded : DWORD): BOOL;

{$EXTERNALSYM GetProcessMemoryInfo}

function GetProcessMemoryInfo (Process : THandle ;

 ppsmemCounters : PPROCESS_MEMORY_COUNTERS; cb : DWORD): BOOL;

implementation

function CheckPSAPILoaded : Boolean ;

begin

 if hPSAPI = 0 then begin

{$IFDEF MSWINDOWS}

 hPSAPI := LoadLibrary ('PSAPI.dll');

 if hPSAPI < 32 then begin

 hPSAPI := 0;

 Result := False ;

 Exit ;

 end;

{$ENDIF}

 @_EnumProcesses := GetProcAddress (hPSAPI, 'EnumProcesses');

 @_EnumProcessModules := GetProcAddress (hPSAPI, 'EnumProcessModules');

 @_EnumDeviceDrivers := GetProcAddress (hPSAPI, 'EnumDeviceDrivers');

 @_GetProcessMemoryInfo := GetProcAddress (hPSAPI, 'GetProcessMemoryInfo');

 end;

 Result := True ;

end;

In maXbox you can also check if a DLL is loaded. You find this function CheckPSAPILoaded in
the script. And you may guess that LoadLibrary ('PSAPI.dll') is also a DLL function and so
on.
Therefore a DLL provides a way to communicate between applications with different technologies
and programming languages.

����DLL file is stored in a binary PE format. This prevents a software- and hardware-independent
way of accessing functions or storing data.

5

The file formats for DLLs are the same as for Win EXE files – that is called, Portable Executable
(PE). Another topic is maintenance. In most cases, when you get a message that a DLL file is
missing it is because a program has been installed or uninstalled incorrectly.

Often you can tell what program it is by looking carefully at the name of the file. MSWKS, for
example, refers to Microsoft Works.
But you may have to use your imagination -- or your memory to figure it out!

���� In any case, if the DLL is associated with a program you are using and want to go on
using, in most cases just reinstall the program. That should restore the file.

You see DLL is a large topic but we won’t go that far. Just one last example and then we dive into
the code example to bind those functions together.

Let’s go back to the OpenProcess() . We use for most of your configuration an XML file to
describe the build or install process with the necessary DLL files mentioned. A file for example
you can get over internet and it has the purpose of an ini-file:

http://max.kleiner.com/myconfig.xml

The ini-file format is still popular; many configuration files (such as desktop or persistence
settings file) are in this format. This format is especially useful in cross-platform applications and
mobile devices where you can't always count on a system registry for storing configuration data
or save the user options.
It shows the implementation of 2 databases (Interbase and mySQL) and the needed DLL which
communicate with a client over TCP and sockets. I made it scriptable to demonstrate the
fascination of 2 database boxes communicate with each other at the same time.

<?xml version="1.0" ?>

- <databases>

- <database db="Firebird22">

- <connection>

<name>TInterbaseTrueSoft</name>

<path>\\testserver\SuperPath</path>

<dll >GDS32.DLL</user>

</connection>

</database>

- <database db="mySQL55">

- <connection>

<name>maXSQL</name>

<server>/.//kylix05/mXbase</server>

<dll>mySQL.DLL</user>

</connection>

</database>

</databases>

So far so dude, let’s start scripting. If a maXbox script or app is programmed to assume to get a
file, it is always started relative to the path where the maXbox3.exe as the host itself is:
So for example you want to store or load a file, all your external files (we need one file below
mentioned) or resources in a script will be found relative to ExePath() :

E:\Program Files\maxbox\maxbox3\samplegen3.xml

In this case ExePath() is > E:\Program Files\maxbox\maxbox3 .

ExePath is a useful function where you always get the path of maXbox.

6

If someone tries to start (install) the script or the app to or from a different drive for space or
organizational reasons, it may fail to (install) or to run the script after installation2.
You find all info concerning run environment of the app, dll and script in menu

../Program/Information/……
../Debug/Modules Count/……{list of all loaded DLLs!}

I am assuming you did have encountered DLL problems on your disk like this:
Exception: Access violation at address 772C5349 in module 'ntdll.dll'. Read
of address 00000003.

Then most of support says either changes the path, check environment vars or reinstall the OS or
get the files from the installation disk. The files are usually under i386 folder and are with .DL_
extension or Lib in mobile; if you have service packs you can try to install them since they might
have the .dll file and will override the existing one.
Next you see the DLL App which shows the source of our first function OpenProcess() :

1. DLL Spy at work

Many system DLLs are called key system components (kernel32.dll , advapi32.dll ,
ntdll.dll , hal.dll , user32.dll , gdi32.dll , and so forth). If you have ever programmed in
Pascal or C, then you would know that unlike any object-oriented programming language like
Object Pascal, the basic unit of organization is the function; that C or Pascal is a function, or
procedural (not object) oriented language.

Next we dive into scripting our long ago introduced process information with the help of 3 DLL.
You need the following script file ready to download and start with compile:

http://www.softwareschule.ch/examples/440_DLL_Tutor2.txt

2 You don’t have to install maXbox or a script anyway, just unzip and drop the script

7

Now we want to produce some data similar to the Task Manager below. In reality, a DLL file can
be large enough so the structure generates some overhead you don’t have with a direct link.
That’s the price for modularity at runtime.

2. DLL and Process Info

Programs that must run on earlier versions of Windows as well as Win 7 and later versions
should always call this function as GetProcessMemoryInfo .
Such a standard way of describing process data would enable a user to send an intelligent agent
(a program) to each computer maker's web site, gather data, and then make a valid comparison.
A DLL can be used by software or companies that want to share information in a consistent way.

The output from the script represents the data of the Task Manager:
workset mem from dll 157876224

workset page from dll 140021760

workset memproc test in bytes 157876224 //unit test

proc peak max. workingset in K 850924

proc peak max. paged use in K 647060

proc page peak file usage K 845200

!workset! mem from dll in K 154176 //=(157876224/1024)

True

OS Verinfo Major 6

OS Verinfo Minor 1

OS VerSizeinfo 148

So the app 440_DLL_Tutor2.txt has the following functions:

• [OpenProcess] : Opens an existing local process object. If the function succeeds,
the return value is an open handle to the specified process.

• [GetProcessMemoryInfo] : Retrieves information about the memory and page
usage of the specified process.

• [GetVersionEx] : Structure that receives the operating system information. Load
the data for database or build transaction.

With the release of Win 8.1, the behavior of the GetVersionEx API has changed in the value it
will return for the operating system version. The value returned by the GetVersionEx function
now depends on how the application is manifested.
So I think it’s time for practice. Load the script and press the button [Compile] and you should
see the output above based on the lines below and compare it with the Task Manager.

8

 verinfo := GetOsVersionInfo2 ; //mX script
 writeln ('OS Verinfo Major: ' +intToStr (Verinfo . dwMajorVersion))
 writeln ('OS Verinfo Minor: ' +intToStr (Verinfo . dwMinorVersion))
 writeln ('OS Versizeinfo: ' +intToStr (Verinfo . dwOSVersionInfoSize))

 aProcessHandle := OpenProcess2 (PROCESS_QUERY_INFORMATION or
 PROCESS_VM_READ , false , GetCurrentProcessID);

This first project 440_DLL_Tutor2 has been designed to be as simple as possible. But what
does it mean running or loading at runtime?

���� Libraries can be loaded at runtime and thus shared between different concurrent
applications. This is called dynamic linking.
Plus if a DLL is shared between applications, the OS can optimize how the library is loaded and
share it between apps. Instead of loading a large single EXE into memory, the OS can load only
the portions and parts needed.

1.2 Get the Process
Now it’s time to put those pieces together and serve the highlight. How about the code of our
Process Information? The procedure will accept a structure of TProcessMemoryCounters
commands, until a Result delivers the specific information back.
It is a pointer3 to the PROCESS_MEMORY_COUNTERS or PROCESS_MEMORY_COUNTERS_EX structure
that receives information about the memory usage of the process.
GetProcessMemoryInfo in turn calls the OpenProcess function to obtain the process handle. If
OpenProcess fails, the output shows only the process identifier or in our case ProcessID .

function ProcessPageUsage (ProcessID : DWORD): DWORD;
var ProcessHandle : THandle ;
 MemCounters : TProcessMemoryCounters ;
begin
 Result := 0;
 ProcessHandle := OpenProcess2 (PROCESS_QUERY_INFORMATION or
 PROCESS_VM_READ , false , ProcessID);
 try
 if GetProcessMemoryInfo (ProcessHandle ,
 MemCounters , sizeof (MemCounters))
 then Result := MemCounters . PagefileUsage ;
 finally
 CloseHandle (ProcessHandle);
 end;
end;

Finally, ProcessPageUsage calls the GetProcessMemoryInfo function to obtain the memory
usage information for this kind of page file usage.

����Note that only pieces of the DLL are "virtually loaded": not the entire DLL. This can be a
misunderstanding: a loaded executable means that only pieces of it are loaded, not the entire
image. Only the needed pieces of it are loaded.
As more features are used in application, more pieces of it are loaded, as well as the appropriate
DLLs. This is part of the Win Memory Management mechanism – any memory that can be shared
will be shared.

Alternative or as an added value we use at Nr. 3 of DLL functions the GetVersion function also
as a DLL but the mXRTL does also deliver the function from inside:

3 In maXbox we use a reference, no pointers allowed

9

procedure GetVersionEx3 (out verinfo : TOSVersionInfo); //ExA case sensitive!
 External 'GetVersionExA@kernel32.dll stdcall' ;

����Before calling the GetVersionEx function, set the dwOSVersionInfoSize member of the
OSVERSIONINFO data structure to sizeof (OSVERSIONINFO).
The GetVersionEx function was developed because many existing applications got an error
when examining the packed DWORD value returned by GetVersion , transposing the major and
minor version numbers.

function GetOsVersionInfo3 : TOSVersionInfo ;
var
 verInfo : TOSVersionInfo ;
begin
 verinfo . dwOSVersionInfoSize := sizeof (verinfo);
 GetVersionEx3 (Verinfo);
 result := Verinfo ;
end;

You can test for the presence of the functions associated with a feature.
To test for the presence of a function in a system DLL, call the LoadLibrary function to load the
DLL. Then call the GetProcAddress function to determine whether the function of interest is
present in the DLL. Use the pointer returned by GetProcAddress to call the function. Even if the
function is present, it may be a stub that just returns an error code such as
ERROR_CALL_NOT_IMPLEMENTED.

function CheckPSAPILoaded : Boolean ;
var hPSAPI : THandle ;
begin
 if hPSAPI = 0 then begin
{$IFDEF MSWINDOWS}
 hPSAPI := LoadLibrary ('PSAPI.dll');
 //writeln('debug DLL handle '+inttostr(hPSAPI));
 if hPSAPI > 32 then result := true ;
 if hPSAPI < 32 then begin
 hPSAPI := 0;
 Result := False ;
 Exit ;
 end;
 {$ENDIF}
 end;
end;

When using the GetVersionEx function to determine whether your application is running on a
particular version of the OS, check for version numbers that are greater than or equal to the
version numbers you want in our case to test Vista.
This verification ensures that the test succeeds for later or mobile versions of the OS. Those are
just words it follows the code:

function IsWindowsVista : boolean ;
var
 verInfo : TOSVersionInfo ;
begin
 verinfo . dwOSVersionInfoSize := Sizeof (verinfo);
 GetVersionEx (Verinfo);
 result := Verinfo . dwMajorVersion >=6;
end;

10

1.3 Calling Conventions
When you call a DLL written in C or C++, you have to use the stdcall or cdecl convention.

 External 'GetVersionExA@kernel32.dll stdcall' ;

Otherwise, you will end up in violation troubles and from time to time the application may crash.
But for the rest of the world you can use pascal ! By the way the DLL, you are calling, should be
on the search path already mentioned ;).
So these conventions (stdcall , cdecl) pass parameters from right to left. With cdecl , the caller
(that's maXbox or Delphi) has to remove the parameters from the stack when call returns, others
clean-up by the routine.

����Tip in C++: DLL_IMPORT_EXPORT means after all stdcall .
To understand which operations can be performed on which expressions, we need to distinguish
several kinds of compatibility among types and values. These include:

• Type identity
• Type compatibility
• Assignment compatibility

The common type system defines how types are declared, used, and managed in the runtime,
and is also an important part of the runtime's support for cross-language integration.
A last word about the import unit:

����Import Units wraps the functions of the API in DLLs for example:

const
 {$EXTERNALSYM SC_SCREENSAVE}
 SC_SCREENSAVE = $F140;

mmsyst = 'winmm.dll';

implementation
function auxGetDevCaps; external mmsyst name 'auxGetDevCapsA';
function auxGetDevCapsW; external mmsyst name 'auxGetDevCapsW';
function auxGetNumDevs; external mmsyst name 'auxGetNumDevs';
function auxOutMessage; external mmsyst name 'auxOutMessage';
function CloseDriver; external mmsyst name 'CloseDriver';

11

As I stated in an earlier article/session, it's possible to get an object-reference out from a DLL.
This technique is known under the name DLL+.

Component Download:

http://max.kleiner.com/download/cpluscall.zip

initialization
 MyIntObject := TMyObject . Create ;
finalization
 MyIntObject . Free ;

But how about the DLL is written in C++?

At the very end we call a C++ DLL from maXbox script 38_pas_box_demonstrator.txt /
39_pas_dllcall.txt : of the DLL income.dll or income_c.dll
First of all, you have to translate the header-file (should be delivered with the DLL), which is like
an interface-section in OP. Headers in C usually contain all sorts of definitions which are relevant
outside the module. In our C++ example it looks like:

/* FILE: income . h */
class CIncome
{
 public:
 virtual double __stdcall GetIncome(double aNet to) = 0 ;
 virtual void __stdcall SetRate(int aPercent, int aYear) = 0 ;
 virtual void __stdcall FreeObject() = 0 ;
} ;

Then you translate it to an Abstract Class in a unit of her own:

//FILE: income.pas
interface
type
CIncome = class
 public
 function GetIncome (const aNetto : double): double ;
 virtual; stdcall; abstract;
 procedure SetRate (const aPercent : Integer ; aYear : integer);
 virtual; stdcall; abstract;
 procedure FreeObject ; virtual; stdcall; abstract;
end;

In the C++ DLL, there is a procedure FreeObject , this is necessary because of differences in
memory management between C++ and OP:

void __stdcall FreeObject()
 {
 delete this ;
 }

At least the DLL-call is simple:

incomeRef: CIncome; //member of the reference

function CreateIncome: IIncome;

 stdcall; external 'income _c.dll';

function _SayHello2 : boolean ;
external '_SayHello2@income.dll stdcall' ;

12

if _SayHello2 then
 writeln ('dll invocation realised');

I got also 2 DLL tools available as my advise:
DCC32 compiler with JHPNE as option will generate C++ headers (with .hpp extension) for your
units!

� DCC32 -JHPHN -N D:\DEV\PPT –O D:\DEV\PPT –U

 D:\COMPONENTS\SC2_2\securePtBase.pas

“rundll” is a small shell program that makes a DLL run as a normal program would!

� rundll32 income.dll ‘_SayHello2 ’ //for short tests

3: DLL Lib in Action

German: Unter einer dynamisch ladbaren Bibliothek versteht man in Windows eine dynamische
Linkbibliothek (DLL) und in Linux eine Bibliotheksdatei mit gemeinsamen Objekten. Es handelt
sich dabei um eine Sammlung von Routinen, die von Anwendungen und von anderen DLLs bzw.
gemeinsamen Objekten aufgerufen werden können.
Dynamisch ladbare Bibliotheken enthalten wie Units gemeinsam genutzten Code und
Ressourcen.
Sie stellen jedoch eine separat kompilierte, ausführbare Datei dar, die zur Laufzeit zu den
Programmen gelinkt wird, die sie verwenden.

�

Links of maXbox and DLL Programming:

13

http://www.softwareschule.ch/maxbox.htm

http://sourceforge.net/projects/maxbox

http://sourceforge.net/apps/mediawiki/maxbox/

https://github.com/maxkleiner/maXbox3.git

http://en.wikipedia.org/wiki/Dynamic-link_library
http://max.kleiner.com/download/cpluscall.zip

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682050%28v=vs.85%29.aspx

14

1.4 Appendix I
{** *****}

{ Borland Delphi Run-time Library }
{ WinNT process API Interface Unit }

{ }

{ Copyright (c) 1985-1999, Microsoft Corporat ion }
{ Translator: Borland Software Corporation }

{** *****}

unit PsAPI ;

interface

{$WEAKPACKAGEUNIT}

uses Windows ;

{$HPPEMIT '#include <psapi.h>'}

type

 PPointer = ^Pointer ;

 TEnumProcesses = function (lpidProcess : LPDWORD; cb : DWORD; var cbNeeded :
DWORD): BOOL stdcall;

 TEnumProcessModules = function (hProcess : THandle ; lphModule : LPDWORD;
cb : DWORD;

 var lpcbNeeded : DWORD): BOOL stdcall;

 TGetModuleBaseNameA = function (hProcess : THandle ; hModule : HMODULE;

 lpBaseName : PAnsiChar ; nSize : DWORD): DWORD stdcall;

 TGetModuleBaseNameW = function (hProcess : THandle ; hModule : HMODULE;

 lpBaseName : PWideChar ; nSize : DWORD): DWORD stdcall;

 TGetModuleBaseName = TGetModuleBaseNameA ;

 TGetModuleFileNameExA = function (hProcess : THandle ; hModule : HMODULE;

 lpFilename : PAnsiChar ; nSize : DWORD): DWORD stdcall;

 TGetModuleFileNameExW = function (hProcess : THandle ; hModule : HMODULE;

 lpFilename : PWideChar ; nSize : DWORD): DWORD stdcall;

 TGetModuleFileNameEx = TGetModuleFileNameExA ;

 {$EXTERNALSYM _MODULEINFO}

 _MODULEINFO = packed record

 lpBaseOfDll : Pointer ;

 SizeOfImage : DWORD;

 EntryPoint : Pointer ;

end;

 {$EXTERNALSYM MODULEINFO}

 MODULEINFO = _MODULEINFO;

 {$EXTERNALSYM LPMODULEINFO}

 LPMODULEINFO = ^_MODULEINFO;

 TModuleInfo = _MODULEINFO;

PModuleInfo = LPMODULEINFO;

 TGetModuleInformation = function (hProcess : THandle ; hModule : HMODULE;

 lpmodinfo : LPMODULEINFO; cb : DWORD): BOOL stdcall;

 TEmptyWorkingSet = function (hProcess : THandle): BOOL stdcall;

TQueryWorkingSet = function (hProcess : THandle ; pv : Pointer ; cb : DWORD):
BOOL

15

1.5 Appendix II
DLL Loaded Inspector of the Tool in maXbox

You find a DLL Loader List of the app in menu

../Debug/Modules Count/……

0: D:\kleiner2005\TestApp\maxbox2\maxbox2\source_2007\maxbox29\maxbox3.exe

1: C:\WINDOWS\system32\ntdll.dll

2: C:\WINDOWS\system32\kernel32.dll

3: C:\WINDOWS\system32\oleaut32.dll

4: C:\WINDOWS\system32\msvcrt.dll

5: C:\WINDOWS\system32\USER32.dll

6: C:\WINDOWS\system32\GDI32.dll

7: C:\WINDOWS\system32\ADVAPI32.dll

8: C:\WINDOWS\system32\RPCRT4.dll

9: C:\WINDOWS\system32\ole32.dll

10: C:\WINDOWS\system32\opengl32.dll

11: C:\WINDOWS\system32\GLU32.dll

12: C:\WINDOWS\system32\DDRAW.dll

13: C:\WINDOWS\system32\DCIMAN32.dll

14: C:\WINDOWS\system32\version.dll

15: C:\WINDOWS\system32\mpr.dll

16: C:\WINDOWS\system32\IMAGEHLP.DLL

17: C:\WINDOWS\WinSxS\x86_Microsoft.Windows.Common-
Controls_6595b64144ccf1df_6.0.2600.2180_x-ww_a84f1ff9\comctl32.dll

18: C:\WINDOWS\system32\SHLWAPI.dll

19: C:\WINDOWS\system32\imm32.dll

20: C:\WINDOWS\system32\URLMON.DLL

21: C:\WINDOWS\system32\wininet.dll

22: C:\WINDOWS\system32\CRYPT32.dll

23: C:\WINDOWS\system32\MSASN1.dll

24: C:\WINDOWS\system32\shell32.dll

25: C:\WINDOWS\system32\winspool.drv

26: C:\WINDOWS\system32\comdlg32.dll

27: C:\WINDOWS\system32\wsock32.dll

28: C:\WINDOWS\system32\WS2_32.dll

29: C:\WINDOWS\system32\WS2HELP.dll

30: C:\WINDOWS\system32\winmm.dll

31: C:\WINDOWS\system32\winhttp.dll

32: C:\WINDOWS\system32\AVICAP32.dll

33: C:\WINDOWS\system32\MSVFW32.dll

34: C:\WINDOWS\system32\iphlpapi.dll

35: C:\WINDOWS\system32\usp10.dll

36: C:\WINDOWS\system32\oledlg.dll

37: C:\WINDOWS\system32\MSCTF.dll

38: C:\WINDOWS\system32\setupapi.dll

16

39: C:\WINDOWS\system32\olepro32.dll

40: C:\WINDOWS\system32\uxtheme.dll

41: C:\WINDOWS\system32\appwiz.cpl

42: C:\WINDOWS\system32\DUSER.dll

43: C:\WINDOWS\system32\MSIMG32.dll

44: C:\WINDOWS\system32\OLEACC.dll

45: C:\WINDOWS\system32\MSVCP60.dll

46: C:\WINDOWS\system32\msi.dll

47: C:\WINDOWS\system32\RICHED20.DLL

48: C:\WINDOWS\WinSxS\x86_Microsoft.Windows.GdiPlus_6595b64144ccf1df_1.0.2600.2180_x-
ww_522f9f82\gdiplus.dll

49: C:\WINDOWS\System32\mswsock.dll

50: C:\WINDOWS\system32\DNSAPI.dll

51: C:\WINDOWS\System32\winrnr.dll

52: C:\WINDOWS\system32\WLDAP32.dll

53: C:\WINDOWS\system32\rasadhlp.dll

54: C:\WINDOWS\system32\Secur32.dll

55: C:\WINDOWS\system32\psapi.dll

56: C:\WINDOWS\system32\netapi32.dll

57: C:\WINDOWS\system32\appHelp.dll

58: C:\WINDOWS\system32\CLBCATQ.DLL

59: C:\WINDOWS\system32\COMRes.dll

60: C:\WINDOWS\system32\shdocvw.dll

61: C:\WINDOWS\system32\CRYPTUI.dll

62: C:\WINDOWS\system32\WINTRUST.dll

63: C:\WINDOWS\System32\cscui.dll

64: C:\WINDOWS\System32\CSCDLL.dll

65: C:\WINDOWS\system32\browseui.dll

66: C:\WINDOWS\system32\ntshrui.dll

67: C:\WINDOWS\system32\ATL.DLL

68: C:\WINDOWS\system32\USERENV.dll

69: C:\WINDOWS\system32\xpsp2res.dll

70: C:\WINDOWS\System32\drprov.dll

71: C:\WINDOWS\System32\ntlanman.dll

72: C:\WINDOWS\System32\NETUI0.dll

73: C:\WINDOWS\System32\NETUI1.dll

74: C:\WINDOWS\System32\NETRAP.dll

75: C:\WINDOWS\System32\SAMLIB.dll

76: C:\WINDOWS\System32\davclnt.dll

77: C:\WINDOWS\system32\wpdshext.dll

78: C:\WINDOWS\system32\PortableDeviceApi.dll

79: C:\WINDOWS\system32\Audiodev.dll

80: C:\WINDOWS\system32\WMVCore.DLL

81: C:\WINDOWS\system32\WMASF.DLL

82: C:\WINDOWS\system32\wiashext.dll

83: C:\WINDOWS\System32\sti.dll

84: C:\WINDOWS\System32\CFGMGR32.dll

